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The propagation of radiant energy in stratus clouds and

the
are
and

role of this energy in cloud formation and development
discussed and calculated. The problem of scattering
absorption in clouds is investigated from the viewpoint

of radiation transfer. Absorption spectra of water drop-
lets and ice crystals are given and experiments on light
scattering in clouds are discussed. The role of radiant
energy in the physical processes connected with cloud
formation and the influence of the re-radiation from
clouds to the surrounding atmosphere are discussed and
programmed on an electronic computer ("Ural-1%"). The
problems are formulated with and without allowance for
radiation. The results are compared with the calculations

by other authors and with actual experiments. Nuﬁ;Eiziuz:t:?N/

graphs, tabulations, and references are included.

INTRODUCTION %/3

This monograph is devoted to the investigation of the propagation of radi-

ant energy in
formation and

The laws
differ, since

The main

clouds and to elucidation of the role of radiant energy in cloud -
development. 1

of radiant energy transfer in a cloudy and cloudless atmosphere
the optical properties of such atmospheres differ.

features of clouds as optical media are:

l. Radiant energy is absorbed in a cloud by water vapor, and also by liquid
water drOplets and ice crystals, whose absorption in the long-wave region of
spectrum is one order of magnitude - or more - greater than that of water vapor.

2. Droplet water shows extensive absorption in the 8-12 u spectrum band,
i.e., in the ™transparent window® of the atmosphere for which the absorption of
water vapor is low. This is of primary importance in the heat exchange between:
a cloud and the atmosphere surrounding it.

3. Liquid water and ice have continuous absorption spectra, in contrast to
water vapor, which has a line spectrum.

L. long-wave radiation undergoes considerable scattering by liquid water

# Numbers in the margin indicate pagination in the original foreign text.
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and ice, while such scattering is negligible in the cloudless atmosphere.

5. The scattering coefficient of droplet water in the short-wave region is
several orders greater than that of the cloudless atmosphere.

6. The scattering of light by water droplets is characterized by a very
elongated scattering indicatrix.

The need for taking account of scattering as well as absorption, the
elongation of the indicatrix of clouds, and the great optical thickness make the
radiation transfer problem in clouds considerably more difficult than in the
cloudless atmosphere. This problem belongs to the specialized field of radia- .
tion transfer theory ~ which studies transfer in strongly scattering media, in-
cluding such objects of geophysical study as clouds, oceans, or snowfields, and
in many cases demanding the development of special methods of research. Problems
in the optics of powders and colloids are also related to this general subject
matter.

The studies reported in this monograph, in their general direction, can be
classified into two groups:

1. Investigations of the optical regime of clouds, and of the angular and |
spectral distribution of the radiation emitted by them (Chapters II-IV). ’

: 2. Elucidation of the role of radiant energy in the physical processes con—
nected with cloud formation and atmospheric thermodynamics.

In the concluding part of the book (Chapters V-VII, especially Chapters yi
IIT and IV), two aspects of the phenomena are likewise dlstlngulshed. the in-
fluence of radiation on the state of a cloud, and the influence of a cloud, by
virtue of its radiational properties, on the surrounding atmosphere.

The following is a brief summary, Chapter by Chapter.

Chapter I is an introductory review of the basic facts on the cloud as an
optical medium, for use in subsequent Chapters. ’

Chapter II investigates the scattering, in clouds, of solar energy in the
visible spectrum range (0.35-0.75 u); develops an approximate method for de-
termining the radiation intensity and flux; calculates the mean radiant flux on.
the boundaries of stratus clouds of various forms, together with their albedo; |
and gives the directional distribution of the radiation reflected and trans-
mitted by clouds. We also consider the propagation of light from a directed
source through a cloud, estimate the correction to the direct light of the ;
source for multiple scattering, and propose a method for determining the spec-
trum of the particles by measuring the attenuation of the direct beam. f

Chapter III gives a method of calculating the radiation flux with allow-
ance for the absorption and calculates the spectral flux on the boundaries of a
cloud in the near-infrared region of the spectrum (0.70 < A < 2.5 u). The |
quantity of solar radiation absorbed by a cloud layer is also estimated.



Chapter IV determines the spectral albedo and characteristic radiation of
clouds in the long-wave region (3 < ) < 30 u) and estimates the degree to which
the radiation from cloud boundaries approaches black-body radiation. In this
Chapter (and in Chapter V) we elucidate the qualitative features of the effect
of a cloud layer on the vertical temperature distribution in the atmosphere.

Chapter V, for the case of an atmosphere containing a cloud layer, con-
siders a classical problem in radiation transfer theory: the vertical tempera-
ture distribution under conditions of radiative equilibrium. Our calculations
demonstrate the influence of the cloud on the temperature conditions of the
atmosphere and the interaction of various factors of radiation transfer in the :
development of the radiation temperature.

Chapter VI is devoted to the nonstationary thermal regime of stratus clouds
after their formation. We study the radiative cooling of the upper part of a
cloud, considered in isolation or in conjunction with other forms of heat ex-
change. We investigate the development, above the clouds, of temperature in-
versions of radiative origin. We define the ability of a cloud layer to form
spontaneously and maintain itself, by means of radiative transfer, in the neigh-
borhood of the upper boundary.

Finally, Chapter VII investigates the role of radiative heat transfer in
the initial stage of cloud formation. Here, we pose the general problem of the
formation of a cloud layer as a result of interaction between all the principal:
factors of heat exchange and moisture exchange. However, we give only the very:
first preliminary results of the solution.

In this monograph we consider only those stratus clouds that constitute
sufficiently simple optical media, i.e., clouds that are plane-stratified and
are of great horizontal extension. These clouds are interesting, since they
are stable, typical for the middle latitudes, and cover large areas. A number
of the results obtained for stratus clouds may be applied to clouds of other
forms.

In conclusion, we note that the primary method of investigation has been
the numerical solution of the equations of radiation transfer and heat exchange.
The approximate solutions obtained are often rather rough (mainly in Chap- /5
ters III-IV); an error estimate is given in all cases where it could be made.

The work on which this monograph is based was performed with the partici- |
pation of M.A.Kuznetsova and Ye.P.Petrova, lLaboratory Assistants, Institute of
Atmospheric Physics, USSR Academy of Sciences, who did most of the calcula- »
tions. M.A.Kuznetsova also took part in compiling the survey of physical pro-
perties of stratus clouds (Chapter I, Section 1). Junior Scientist O.N.Dobrova,
Institute of Atmospheric Physics, took part in working out the method of solv~
ing the transfer equations given in Chapter II, Sections 2-5, and in the calcu~
lations. Junior Scientist L.V.Petrova, Institute of Atmospheric Physics, did
the programming of the problems given in Chapter VII, and obtained the numeri- .
cal results on an "Ural-1l" computer. I express my thanks to all these col-
leagues.

I also wish to thank Prof.G.V.Rozenberg, Senior Scientist M.S.Malkevich
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and L.M.Romanov, Candidate in Physical and Mathematical Sciences, for a number
of useful suggestions.

This monograph is the result of investigations by the author during the
last 12 years. The work before 1958 has been reviewed and substantially re-
vised.

The first stage of this work was done under the guidance of Prof.Yevgraf
Sergeyevich Kuznetsov. I also express my profound appreciation to Ye.S.
Kuznetsov.
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SYMBOLS 26

In this paper the following symbols are used:

N
I

height,

direction of propagation of energy characterized
by the polar angle 8, and azimuth ¥, p = cos 0,
t -~ time,

t° - temperature in Centigrade,

T - absolute temperature,
d

v

a

H
I

Ts - dew point temperature,
- vertical temperature gradient,

Ya - adiabatic temperature gradient,

¢cp - heat capacity at constant pressure,

p - air density,

pv - density of water vapor in the atmosphere,

or humidity,
Pco, =— same for carbon dioxide,

Py - same for droplet water, or liquid water content,
pa -~ same for aerosol,

Qv = 2* - specific hmidity,
0

Qv = L specific water content,
0

g = aquw *+ gqv - specific total moisture content,
u - relative humidity,
w - vertical velocity,
k¢ - kinematic coefficient of turbulent mixing,
a - effective coefficient of absorption of real air
per unit mass,
n - refractive index,
® - absorption index,
@, - mass coefficient of absorption of water vapor,
Qcp, =— same for carbon dioxide,

oy, - same for water,
aq -~ same for aerosol,
Xy Oy Ayj Ogo,3 Xa = volumetric coefficient of absorption for the
same cases,
P(m) - function of radlatlve transfer in the layer

containing m gm/cm of the absorbing substance.

Analogous symbols are used for mass and volume coefficients of scatterlng
making use only of 0, Oy, and 0, as well as coefficients &, &, and . In
addition, we also wlll have 0z and Oy which are purely molecular or Rayleigh
scattering coefficients. Accordingly, the following are defined:

v(®) - function of scattering (we will denote this by
indicatrix of scattering) of a real atmosphere,
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Yy (®) - function of scattering of droplet water,

Ye(®) - same for aerosol.

We note that the values @, 0, and vy for all substantions given here are, /7
generally speaking, functions of the wavelength A (or of the frequency v). The

relation to the wavelength is denoted by @y, Oy, V).

Furthermore, the function

and coefficient of scattering of droplet water both depend on the size of the ‘
droplets; the symbols given above relate to a combination of droplets of differ-
ent sizes. In the case of a single droplet with a radius a, the symbols o,(a), "

Y.(a, ®) are used.

D ~ coefficient of total attenuation of radiation,
T - optical thickness measured from the lower boundary

of the atmosphere,

T - optical thickness measured from the upper boundary,

T% ~ total optlcal thickness of the atmosphere: % =

=T+,

To - total optical thickness of the cloud layer,
A, - albedo of the earth'!s surface,

A - albedo of the cloud layer,

I(z, r) - intensity of radiation at the point z, in the

direction r,
F(z) - radiation flux,

I, and F; - intensity and flux of ascending (i = 1) and
descending (i = 2) radiation,
ro - direction of propagation of solar light,
C - zenith distance of the sun, pe = cos C,

TS - solar constant,
- droplet radius,

ma Kg(a, A) - effective cross section for scattering,
2 s
ma Ka{a, X) - same for absorption,
ma Kl(a, ) - effective cross section for integral back
scattering,
na®K (a, A) - effective cross section for attenuation,

v - meteorological visibility range.

All formulas, illustrations, and Tables are designated by three numbers:
The first (Roman) indicates the Chapter number, the second - the Section number,

the third - the formula, Figure, or Table number.



CHAPTER I /8
THE CLOUDY ATMOSPHERE AS AN OPTICAL MEDIUM |

Section 1. Survey of the Physical Properties of Stratus Clouds

This review contains a summary of the basic concepts on the physical pro- %
perties of stratus clouds. More complete information can be found in monographs
(Bibl.1-3) and in the compendium (Bibl.l).

1.l Forms of Stratus Clouds

tratus clouds include cirrostratus designated below as Cs (Cirrostratus),
high stratus designated as As (Altostratus), stratus-rain designated as Ns (Nim-
bostratus), Sc (Stratocumulus) and St (Stratus). Similar to these in their
physical properties are also Ac (Altocumulus).

Stratus clouds of the upper-layer Cs appear as a white or light-tlue rather
thin veil. They are observed singly or in combination with other cloud forms.
With the passage of frontal cloudiness, Ci (Cirrus) increase in quantity and
gradually cover the entire sky, changing into Cs which, in turn, are replaced
by As after compacting and lowering.

As clouds belong to those of the middle layer. They have the appearance
of a grayish or bluish homogeneous layer of fibrous structure; As may cover the:
entire sky. Weakly defined waves are sometimes noted along the lower base of
the sheet. As clouds often are similar to Ac clouds in cases when Ac have the
appearance of a continuous sheet.

Clouds of the lower layer include the St, Sc,and Ns clouds. The nimbo-
stratus clouds Ns form a continuous gray or dark-gray sheet with various bluish+
yellowish hues; the highly amorphous and locally translucent Ns are of great
thickness. Usually, Ns are formed from As whose layers gradually become com—
pacted and sink until they are converted to Ns. Such clouds produce extensive
precipitation and are almost always connected with fronts. :

Together, the Ns and As clouds form the frontal system of Ns~As clouds
(sometimes Ns-As-Cs) distinguished by great thickness. Because of precipita-
tion, the base of the Ns is always washed out and ragged. Internally, Ns are
quite nonuniform with occasional interspersed individual cumulonimbus clouds. |

Stratus clouds St appear as a low gray or grayish-yellow sheet of almost
homogeneous form resembling fog rising above the earth's surface. The lower
surface of the clouds is quite ragged with irregular wisps hanging from it.

Stratocumulus clouds Sc consist of large globular masses, waves, or gray [2
shrouds. Between these elements, the cloud cover thins out, forming inter-
stices.

10



1.2 levels, Thickness, Temperature, Moisture

In this and the following Sections provisional data on stratus clouds are
compiled.

Table I.1.1 [assembled from data of the monograph (Bibl.1)] gives the dis-
tribution with height and the thicknesses of various forms of clouds.

TABIE I.1.1
Type of Cloud ”‘il":-°f Base Thickness of Layers, ka
Cs 6—8 1.5—2.5,
et times from 0.1 to
several ka
As 2—6 1—2
Ac 2—6 ~0.3
Ns—As 0.1—1 2—3(et times 5—6)
St 0.1-0.7 0.2—0.8
Se 0.6—-1.5 0.2-0.8

Ns —As—Cs ~1 56 (to 12)

Temperature data are given below.

Table I.1l.2 shows the temperatures of Ci clouds according to data in an-
other report (Bibl.5).

TABLE T.1.2
Lower Boundary { . Upper Beundary
Linits of Observed """ ”“I“”"J 1 “Limits of Observed ! “Hose Frequently ?
Teaperature Recurring Temperature Recurring :
Teaperatures 1 e - | Teaperatares i
|
-23°; —62° l —40°; —45° \ —40°; —75° —467; —48°

The Ns-As cloud systems are characterized principally by negative tempera-:
,tures (Bibl.1). Temperatures of +5° and -5° occur most frequently at the lower:
boundary. The temperature gradient within the system is, on the average, some-.
what smaller than the moist-adiabatic and increases with height: 0.47 at the
lower boundary, 0.49 in the middle, and O.55 in the upper boundary. The range
of temperature from -8° to -12° predominates inside the cloud. f

In 1nd1v1dually occurring As layers, temperatures from -4° to -6° pre-
dominate, while in As clouds temperatures of -6° to -& predominate. These data
are taken from another report (Bibl.l) and obviously refer to the summer period.

For St-Sc clouds the temperature distribution given in Table I.1.3 (Blbl.l)
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is typical.

In interpreting Takle I.1.3, we indicate that for St and Sc clouds the
presence of above-cloud inversion, partly wedged into the cloud itself, is char-
acteristic. The nature and character of both parts of the inversion (within
the cloud and above it) are different. This question is considered in more de-
tail in Chapter VI. ILines 5 and 6 in Table I.1.3 relate to the first part of
the inversion while lines 7 and 8 refer to the second part.

A detailed analysis of moisture in the clouds is made difficult by the low
accuracy of hygrometers and their large inertia (especially at a humidity [;Q
close to 100%; it is usually assumed that the relative humidity in clouds is

equal to 100% because reliable measurements of supersaturation are as yet al-
most unavailable).

TARIE I.1.3
Deceaber- Warch- - June- Septeaber- |Average for
February Ney August October the yeer
. T t adignt
ander the clowd, /100 a|  0.89 0.80 | 0.77 0.78 0.76
| pemperatargon the loverl 90 | —5.0 | 435 | —o8 —2.8
. Temperature gradient
-1 d thout
::vz:'::o:,. /10; - 0.66 0,62 0.65 0.7t 0.66
b hemboresurgen e PP 100 | —6.9 | 1.2 —3.1 —4.7
5. Thickness of inversion
b /S 0.43 | 0.134| 0449 |  0.147 0.139
6. Temperature gradient
Raon g T —3.3 —1.74 | —0.74 | —2.05 —1.94
7. Thickness of the inver- . ) ]
n';: ’llayer above cloud, kn 0.3 0.27 0.39 0.36 0.3
T areiooe ™| —03 | —013 | 400 | —o8 | —0.28

1.3 Phase Composition, Liquid-Water Content, Microstructure

The clouds of the lower and middle layer are mainly all liquid water or
mixed.

In Fig.I.l.l taken from Borovikov (Bibl.l), the lower curve delimits the
region of recurrence of all-water clouds and the upper curve, of mixed types. :
Let us compare this diagram with the temperature data given above. We see that
St-Sc clouds are all-water clouds in no less than 50% of the cases and are al- |
most never all-crystalline. Frontal Ns-As systems are more often mixed than
are St and Sc. The phase composition of individual As and Ac layers has not
vet been sufficiently investigated. However, there are reasons.to believe
(Bibl.1) that the As are mixed clouds while the Ac are predominately crystal- |
line (see also Chapter II, Sect.l). The Cs clouds of the upper layer are always

12




crystalline.

The liquid-water content of the cloud p, dépends on the temperature and /11
on the temperature gradient of the cloud layer (increasing with the increase of

2
4
- - |
: s
i 50 2 |
& A ol
1 Qe 000
0 - -10° -20° -30° -y0°

Tesperature

FigeI.l.1 Correlation of the Phase Composition
of Clouds with the Temperature

the latter), on the height of the lower boundary, on the form of the clouds, on
the phase of its state, and on the thermodynamic conditions of formation of the

clouds Within the limits of the cloud, the liquid-water content changes sub-

/m’

P.9/m
"ogr

-30 <20 <10 0
¢,°C
FigeIl.l.2 Average liquid-Water Content
as a Function of Temperature

stantially along the vertical. Figure I.l.2 shows the correlation of the ’
liquid-water content of stratus clouds with the temperature (the circles repre-:
sent experimental data, while the solid curve gives theoretical data) obtained
from 493 measurements of liquid-water content in the region of Leningrad. These

data are presented in Table I.l.4.
Table I.1.5 gives the data obtained at the TsAO [Central Aerological Ob-
servatory; (Bibl.1)]. The average liquid-water content py .y and the maximum

liquid-water content 0, aax are compiled for two groups of’ St, Sc, Ac and Ns,
As clouds; the measurements were made at Riga, Minsk, and thkovo (average data
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for the three indicated points are given in Table I.1l.5).

A comparison of Tables I.l.) and I.1.5 with the above characteristic temper-
atures, together with other information, permits a general conclusion as to the

TABIE I.l.h

Tesperatore Interwal , g

—35+ —30 | —30+ —25 | —25+ —20 | —20+ —103 =5 | —5+0 [0+ 45
Number
of Cases, n 7 10 22 29 44 105 222 54
Por g/m? ‘ 0.005 0.024 0.030 0.055 0,084 0.110 0.137 | 0.161

characteristic water content of clouds of various types.

sumarized in Table 1

0106.

These results are

TABLE I.l1.5
M, Sc, Ac | Ns, As B
t, *C n Pp, av.. Py, max , n o P .
9/m' gm v, av.,9/m* | Pp, mes $im
=
15—19 15 0.29 1.14 - — —
10—14.9 108 0.27 1.18 26 0.36 1.66
5—9.9 301 0.33 3.14 9% 0.32 1.30
. 0:0—4.9 663 0.30 3.00 295 0.30 1.07
—5.0—(—0.1) 1542 0.21 1.53 644 0.22 1.1
—10.0—(-5) - 1344 0.18 0.9 328 0.17 0.90
—15.0— (—10.1) 710 0.14 1.47 175 0.17 0.67
—20.0—(—15.1) 163 0.13 0.82 66 0.15 0.48
—25.0—(—20.1) 47 0.12 0.39 23 0.15 0.33
—30.0— (—25.1) 3 0.09 0.15 1 0.22 0.22
—35.0— (—30.1) 1 0.15 0.15 - — —_

The distribution of the water content within the cloud with height differs

‘for clouds of various

In Sc, Ac, and St clouds lying below the inversion layer which inhibits
the turbulent exchange, the water content increases with height and reaches a
maximum value in the upper third of the cloud [Fig.I.l.3; (Bibl.6)]; at the
very top boundary, the liquid-water content decreases sharply.

It should be said, however, that recent measurements by G.M.Zabrodskiy 412
(Bibl.7) made with more up~to-date apparatus show an increase in liquid-water

types.

content all the way to the upper boundary.

i7A

{
i
i
i

i
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In Ns-As clouds [Fig.I.l.4; (Bibl.6)] the maximum liquid-water content is

reached in the lower part of the layer when the cloud is thick and in its middle
part when the cloud is only of moderate thickness.

TABIE I.l.6

A W oL T T

© . Frental systens Ns - As !

= e — -xs‘",‘:’"f’:’? v o
St —Sc*

* In another report (Bibl.1l) the average value of liquid-water

content for St-Sc is given, equal to 0.2 gm/m°, while (Bibl.2)

gives test data by various authors; the value C.3 gm/m? is con-
sidered as average.

A seasonal variation in the liquid-water content of stratus clouds is ob- |

served, apparently due to the above-mentioned correlation between liquid-water
content and temperature.

ar dhaaa U
p,.9/m

Fig.I.1.3 Distribution of lLiquid-Water Content
with Height in St, Sc, and Ac Clouds

Mean monthly values of liquid-water content and of temperatures in Sc /13
and Ns clouds, obtained by V.Ye.Minervin (Bibl.8) from a large number of obser-:
vations at a series of points, are given in Table I.l1l.7.

f

The correlation between liquid-water content and temperature was also con-
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firmed in observations by A.I.Voskresenskiy and A.L.Dergach (Bibl.9) according
to which the liquid-water content of St and Sc¢ clouds in Arctic regions is lower

o408 |
) 9/m3 l

Fig.I.l.4 Distribution of Liquid-Water Content
with Height in Ns~As Clouds

than in temperate latitudes (see Table I.1.8). The observed difference in
liquid-water content is apparently explained by the lower temperatures in the

TABIE I.1.7
.:—. Feb, ' Nerch ’ . April Nay “Tune
b | 0.18
Sc { f’:ch . g.u 0.165 0.15 0.19 0.22 | 0.29
( —8.0 —8.2 —1.3 —2.7 —1.1 3.4
Py, 9/m® 0.17 2
N.{ ". o o _212_ 0.16 0.20 0.21 | 0.33
[ = . | —5.0 —2.5 0.0 2.9
]
SC{ :,,.e:;/m 0.305 0.33 0.27 0.23 0.20 | 0.17
. 5.4 5.9 —0.1 —5.1 —5.1 ’ —17.8
3
Ns { :.,,:cﬁ- 0.36 0.35 0.23 0.225 0.20 ’ .20
; 3.8 4.1 —1.3 —2.2 —4.8 ‘ —4.7

Artic as compared with those in the ETC (European Territory of the Soviet
Union). Attention is directed to the difference in liquid-water content of

St and Sc clouds as shown in Table I.1.8. The same conclusions are drawn else-'
where (Bibl.10) where it is shown that, in the Arctic, the liquid-water content |

i
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of Sc clouds is higher than that of St clouds.

In conclusion, we shall show that the liquid-water content is a rather un-.
stable value which fluctuates irregularly within the cloud, with time and from
case to case.

TABIE I.1.8
Cloud Type \ Arctic fp 9o i ETC*® oy, p/wt ‘
st 0.10 0.14
Sc 0.23 0.29

* ETC— European Territory of the USSA

An example of changes in the liquid-water content during horizontal flight.
of an aircraft at a speed of 275 km/hour in stratus layers on the lee of a cold
front is given in Table I.1.9, taken from another paper (Bibl.10).

TABLE I.1l.9
- — - i
Tiae 1 skm-'-‘shm.s-’-lshztﬁ.; 5h25m | 5h3tm t 5hitsm shu—‘ Shidsm |
Py, g/m? .19 l 0.29 i 0.3 ’ 0.02 0.08 , 0.19 { 0.02.i 0.0y
i P

The droplet composition of stratus clouds is characterized in Figs.I.l.5
and I.1.6 and also in the summary Table I.1.10, taken from another paper
(Bibl.2). The size distribution of droplets is presented in Fig.I.l.5. The
contribution of droplets of various sizes to the liquid-water content is shown
in Fig.J.1l.6. The symbols used in Table I.1.10 are a, - average radius, i.e.,
the sum of all radii of the droplets, divided by their total number; a4, -~ the
modal radius corresponding to the most frequently occurring radius of droplets
in the given aggregate; a, ~ the prevailing radius, i.e., the radius correspond-
ing to the maximum contribution to liquid-water content.

An analysis of more detailed and up-to~date data of measurements carried [L&
out at several locations was made at the Central Aerological Observatory. Un-
like in previous papers in the processing of the observational data, here a
correction was introduced for the coefficient of capture of droplets by the

scoop. As a result, the percentage of fine droplets was increased and the cor-
{espond;ng average radius decreased. These data are shown in Table I.l.11l
Bibl.l

17



TABIE I.1.10
Concentration 1 Neaswring i
Type of Cloud | (No.of Drep- Qe B ay » ap, B Intersel, &,
lets,in 1 ca’d) l TR
Sc 340 4 35 | 65 1—12 £
500 | — 10.20 3—-25
310 87 —_ . —
~As 450 5 4.5 7 1—13
Ns 330 6 4.0 12 120 .
175 11 — — —
St ) 260 6 4.0 9 1—22
664 5.3 7.0 - 24

Some information on the changes in the average droplet radius in the cloud
are given in Table I.1.12 for clouds of various types (Bibl.l).

150
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Fig.I.1l.5 Droplet-Size Distribution
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Fig.I.1.6 Contributions to Liquid-Water Content by
Droplets of a Given Size

We note that Table I.1.12 is recommended elsewhere (Bibl.l) for practical
use, as it represents average values. It does, however, give for Ns clouds
a,y values which substantially differ from the values in Table I.1.11 taken
from the same paper (Bibl.l).

The spectrum of droplets in clouds is just as variable a quantity as /15

18



the liquid-water content and depends on the stage of formation of the cloud, on
the considered level, and the thickness. The subject of the variability in
drop sizes is discussed in detail in (Bibl.1l) where it is shown that averaged

TABIE I.1.11
Averege
g";:‘ \ p.-::m._p
St 5.2
Sc 5.0 ‘
Ns ) 5.5 :
Ac 4.8 i
TABLE I.1.12
T T
c{:;:{ Gav, ¥ Cﬁ:‘:{ Gy, P
st 5.0 Se 5.0
St 3.9 Sey 4,0
"Sty 4.5 Scy 4.8
Sty 5.3 Scs 5.5 )
Ns 6.0—7.0 As 4.5—5.0

* Subscripts indicate lower (1), middle (2), and upper (3) parts
of the cloud

characteristics of clouds of various shapeé show less differences than the
characteristics of individual clouds of the same shape or even of the same

TABIE I.l.13
: _ Berevi- . Lewi " |
‘Briker [y Via ,’ Lewis(Bibt. 1) | “evia(Bibl. 1) Ballrich |
Drve of a_miu‘m::',, (BOL 1) (Pecific Cous) | (Otber Regions @ |
Sor | | e ftw | N | ey | N ey | N
s 42 | 46 ) 60 | 99 | 100 | 54 | 320 ] 6 | 25
Se 7.8 82| 5.4 4 | 10
1:: 9.8 | 120 | 6.0 - - - - - =
- | = — | o . 5
Ae e 4 35 | 1.4 ' 8 | 100

§
i

cloud at various stages of its formation or at various levels. This partially
explains the difference in the value of average radii obtained by various
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authors. As an illustration, the values for a,, and the droplet concentra-
tions N based on various data are given in Table I.1.13.

It should be noted, however, that the discrepancies in the values could be
due also to the different methods of measuring the dimensional spectrum or,
what is important, the shortcomings of these methods. We do not intend to
analyze the existing methods, referring the reader to monographs (Bibl.l), and |
wish to point out only the following which is important for problems of cloud
optics. Basically, up to now cloud-drop scoops have been used that are un- !
suitable for trapping very small particles (a < 2 - 3u). As a result, the drop+
size distribution curves often have the appearance of those in Fig.I.l.5, i.e.,!
they have a maximum in the region of average size. In all cases in which
methods without this drawback were used, a second, much stronger maximum ap-
peared in the region of small sizes.

AR R RN

N(a) (Relative values)

Fig.I.1l.7 Examples of the Spectrum of Droplets in Clouds

Thus, in the paper by Keily and Millen (Bibl.12) several examples of spec-
tra, obtained with a device trapping droplets of any size, are given. The
method is based on identifying the droplets by an electric charge induced by /16

an artificial source. Spectra obtained for St clouds are presented in
Fig.Iol¢7-

The results of determination of the droplet spectrum by the optical method
in clouds of the Sc type on the slopes of Mt. Washington are described in an
article by Eldridge (Bibl.13). The data are compiled in Table I.1.1ll giving
‘the number of droplets of various sizes, contained in one cubic centimeter.

It should be pointed out that both of the latter articles were subjected
to severe criticism in the literature (Bibl.1l4, 15, 16). Nevertheless, the
revealed fact of the existence in clouds of small so-called Msubmicroscopic"
particles is undisputable. Changes in optical characteristics of clouds due to
very small particles are discussed elsewhere (Bibl.1l3, 17, 18).

It is interesting that, as indicated in Table I.1.13 (first, second, and
last columns) Sc clouds have a larger average droplet radius and a larger con-
centration than do St clouds; this was also noted (Bibl.1l0) for Arctic condi-
tions. Such a difference between St and Sc clouds is apparently real and
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TABIE I1.1.14
- Ordinal Nuaber of Neasureaents ‘
- Dreplet Redins « & . 2 3 ' R s 6 l 7 . “ .. “r“’
- ..:I‘*M !
0.5 . 34600 | 47900 | 15 100{ 4 910 M&OJ 61 100] 22 100| 25 600| 45 6004 21 300
1.5 24001 830| 37%| 380| 1050 1 4410 8170] 4 4680
2.5 - 350 — 770, 130| — —1 370 ¢ 850 |
3.5 -] - so| 640 — -1 8% —| —| —
4.5 —_ — 230, 430 — — | 370 51 —1 420
5.5 140 30 150 — | —1| — 70! 1 370, 1700
6.5 230| 110 80| — 2000 220 — 510 730! 830 {
7.5 80 20 —] — 480 11404 40, —| —| —
8.5 — 80 - = 70 140+ 40| — —] =
9.5 — 30 - - -— —_f =1 = —_—] -
10.5 —_ —_ - = - -1 =] - —_l -
11.5 — — -1 = — — o — - =
12.5 — —_ - = — -1 110{ — 180, —
Tetel nusber of “J .’J
'd:-rlm- -+« | 37800} 49200|20200{ 3 190 |36 200{ 64 100| 28 100{ 35 400} 54 29800

characteristic since it agrees well with the greater reflectivity of Sc clouds
(see Chapter II, Sect.l).

In conclusion, we would like to mention that several formulas were pro-

posed for describing the spectrum of cloud droplets. Of these, two are widely
accepted:

a) Formula by A.Kh.Khrgian and I.P.Mazin (Bibl.l)

n(a) =a,ate ", . (1.1)
wh
ere bl == ‘-?"—, a; = 1,45 “p'l M

a v

b) Formula by L.M.Llevin (Bibl.19)

n(a)-—-—;—},—i—z;“-.-e ',

(1.2);

where a, denotes the median radius and o the mean-square deviation of the
logarithm of the droplet radius.

A comparison of eqs.(I.1.1) and (I.1.2) with numerous observational data /17
showed that the accuracy of the second formula is somewhat greater. ~

The information on stratus clouds compiled in this Section makes it pos-
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sible to determine the principal parameters. These data are shown in
Table I.1.15.

At the same time, the material examined above shows that a certain caution

is required with respect to the data given in this Table. The Table is useful

TABLE I.l.15
gy o Herghe . Average Avire #ﬂhl
(hickness t A verage . ' Dro 1
Type of Clowds | of Layer|  of Base, '(',‘::g:.:.“' ~7"5:""" Dropiet C:::::—'
“H, ka kn P | € Redius, p tnt_isn
- ca’’
St ~0.5 | 0,1—0.7 0.2 —35; 45 5.2 | 215
. Se - =0.5 {0515 | 0203 | —5% 451 5,0 70
Nas— As 23 | 0.1—1 0.3 —8; —12 | 5.5(6—7) -
As ~0.9 2—8 0.17 —4; —6 4.8
{Suamer-
time)
Ac ~0.3 2-6 0.1 —6; —8 4.5—5 100
(Susmer-
time)
Ns — As —Cg 5—6 1 — —
Cs 1.2 68 0.03 —40; —45; —

only for a rough description of clouds and does not permit a sufficiently clearé

separation of the microstructure and the liquid-water content of clouds of
various types.

Section 2. Radiation Field in the Atmosphere

2.1 Fundamental Concepts

The process of propagation of radiant energy in clouds and in a cloudless
atmosphere is investigated below on the basis of the phenomenological theory
of radiative transfer (Bibl.20, 21).

The basic concept of this theory is the radiation field, i.e., the distri-

bution of radiation intensity I, (x, y, z, r) at each point in space (x, y, z)
for a given wave.

The amount of energy dE,, pertaining to a spectrum interval (A, A + d\)
and propagated within a solid angle d» in the direction r in a time dt through
an element of surface do is related to the intensity of radiation I (x, y, z,
r) by the relationship

dEx = I, cos®dhdsdadt, (I.2.1)

where 8 is the angle included by the normal to the surface do and the direc-
tion r. The quantity Iy is called also the specific intensity. As shown by
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eq.(I.2.1), the radiation intensity is the amount of energy in a single spec-
tral interval, flowing in unit time within a unit solid angle through unit area
perpendicular to the direction of propagation of the energy.

An important characteristic of the radiation field is the total energy

flux (below, we will call it simply flux) which is equal to the total amount of’
energy propagated through unlt area in all dlrectlons in unit time
: Zl 8

(1.2.2)

_ Sll (v, z"" Hon !

This flux is related to a single spectral interval.

In a system of polar coordinates with the axis directed along the exterior
normal to the area the following equation holds

do = sin 0dd dy,
and the expression of the flux can be written in the form

Fl (.’B, Y, z):‘

gl/’l;

Sll(xl y,z, 0, w)Sin“Gd*, : (10203)
o ) v ;

We shall now introduce the characteristics of interaction of radiation
with matter. Matter is able to absorb, scatter, and emit radiation.

The absorptivity of matter can be characterized by the absorption coeffi-
cient. If through an area dc in the medium there passes an amount of radiation
energy equal to the value (I.2.1) then, by definition, the amount of energy
absorbed in an infinitely small layer of thickness ds is equal to

apdsdscos®drhdal, (2, y, 2z, 71), (I.2.4)

where p is the density of the substance (which may vary from point.to point)
and oy is the mass absorption coefficient.

In the scattering of radiation by matter, part of the radiation energy

propagated in the direction r is redistributed in all directions r'. This part5
of the energy is, by definition, equal to

sapdsdscos@dhdo (@, ¥ 2.7 (I.2.5)

In order to fully describe the scattering it is necessary to assign also
the angular distribution of scattered energy; the corresponding function from
the directions r and r?' is called the angular function or the scattering index
w(x, v, 2z, r, and r').

By definition, the quantity
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do' ) )
OATA%T'PdeSCOSﬂ‘dld&)I;; (1.2.6)-

represents the part of energy scattered in the direction of r!. Obviously, the.
scattering index is equated to wmity: :

de =1, (1.2.7)

ol T

1
gST(z.y,z, r,

In what follows it is always assumed that this index depends only on the |
angle of scattering ¢ (and not on the direction of the incident and scattered |
light) and can be presented in the form of a series according to the Legendre
polynomials:

1

T (cosg) = g CiPy (cbs q))_ ‘ - 2.8)5

k=0
We recall here the legendre theorem of adding polynomials /19
& .
k—mil o m m . "o
P,,(cos‘ll')=2w§l{k—+::—:!P,r (c.osﬂ)P,, (cosO)cosk(\p-—\p)-{-’ :
+ Py (cos 0) Py (cos #), [ (I.2.9)

where 8, ¥, and ©', ¢' are the polar and azimuth angles of the directions r
and r' .

The emissivity of matter is characterized by the radiation coefficient The.
By definition, the amount of energy of the wavelength interval (A, X + dr)
emitted by a mass element of matter dm = pdods in the directions included with-
in the elementary solid angle dw for a time interval dt is equal to

n,dmdadid:.

If the medium is in a state of thermodynamic equilibrium, then the emis-
sivity and absorptivity of matter are correlated by Kirchhoff' s law:

=B (), | (I.2.10)

where B, (T) is Planck's function: o

By (1) = 2 L A
A exp (%)—1 v (I.2.11)

For the lower atmospheré* the condition of local thermodynamic equilibrium

*Here and below, by lower atmosphere we mean the troposphere.
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is usually assumed, i.e., it is supposed that, at each locus, the relationship -
(I.2.10) exists for the temperature at this point.

We shall consider that the condition of local thermodynamic equilibrium is
applicable to clouds. :

In addition to the mass absorption coefficient and the scattering coeffi- |
cient @ and o, volumetric coefficients are generally used, i.e., the coeffi-
cients & and ¥ computed for unit volume, where @ = ap and G = op.

Equations (I.2.4) and (I.2.5) yield the dimensional correlations:

ol = a1 =[],

(51= (] =[4],
where [£] is the dimension of length and [m] is the dimension of mass.
In the theory of scattering, also the effective cross sections for scatter-

ing na®K, and for absorption ma“K, are introduced on the portion of the radius
a, which are correlated with ¥ and & by

’ _t‘°'.:L'“ . (Ioll-012)!
’ (1.2.13)
where N denotes the number of particles per unit time. The dimensionless

values K;and K, are designated as relative cross sections for scattering and
absorption.

For a rough description of the angular distribution of scatter, the /20
concept of integral scattering into the front hemisphere (with respect to the
direction of propagation of light)

(I.2.14)

(1.2.15)

The effective cross section for scattering into the back hemisphere which is
denoted by mak, is also used.

The scattering index as a whole is often characterized by the degree of
I}

elongation of I which is equal to

Ta
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2.2 The Transfer Egquation

We will introduce the basic equation which describes the process of radi-
ative transfer in a medium. In doing so, we will assume that the medium con-
tains several substances with different radiation coefficients Ty,, absorption '
coefficients or“ , and scattering coefficients '5“ (and scattering functions
Yr1). On the ray r, we will select a small cylinder with a base do L r and an
altltude ds. "

, The variation in radiative energy in the wavelength interval d\, trans- |
ferred during the time dt over a distance ds through the selected cylinder, is |
equal to ;

dl“d:d@;)dt |
ds e (1.2.16)

This energy fluctuation is due to the loss of energy in absorption which is

Z;l.idswlh E (102.17)

i R o !
or due to a reduction in energy flux in the direction r produced by scatter:mg
in all directions, equal to

D611 dodsdAdedtl,. L
i S (112018)
or due to an increase in energy flux in the direction r produced by radiation
of the medium

2 i dodsdAdodt,
: (I.2.19)

or else due to an increase in energy flux in the direction r produced by scat-
tering of radiation which is propagated in all directions r', equal to

ey Zm iSh (r)n .(" "') d""dm""’ (I.2.20)

"Therefore,
d’ k] ] ’ “ 1 ~ ’
M: 2,“!‘-}-4—;2:,51 ,SI; (=, y, 3, r )7“, (r, ') d(i

ds
—Eﬁn.t‘f‘;x.i)h (z,y,z, r). o _ J (I 2.21)

If the direction cosines of the ray r are designated by 4, m, and n, /21
then

dI dl 3 d[w-i ’
= ld_;+ dy+"dz
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For the case of a plane-stratified medium the last expression is simpli-
fied to

and

(Here the axis z is perpendicular to the boundaries of the medium and is di~
rected from the lower boundary to the upper. The polar axis coincides with
the z axis.)

We will introduce the optical thickness of the atmosphere at the z level,
determined by the formula - 1

T = .2.1 j fan, i(z>+em(sndz (1.2.22)

The optical thickness of the entire atmosphere T is equal to

7 =§{3§M i (2) + 5n, + ()] da.

(1.2.23):

Utilizing eq.(I.2.22) and taking into account eq.(I.2.10), the transfer
equation can be presented in the form of

B
i

dI 1 ) ¥ " |de’ |
cosgﬁ:[i—q’, (t)]Bx (T)+E§Ix(wmln nride =hinn. )

where
® DICA
P, (2) =
* 2 {+51 i) : (I02025)
«( EEAtTX 1(2"")
TA 2, r, I")* d
D@ +3, 9 (1.2.26)

i

In solving eq.(I.2.2;), the natural boundary condition is the condition
imposed on the intensity of radiation penetrating into the medium across the
boundaries.

In the case of a plane-parallel medium, radiation passes in ascending di-

. < ‘
rections (0 <0 < -%— ) into the medium across the lower boundary T = O and in

/o
a descending direction \—5— <6 < ﬂ) through the upper boundary v = 7t%. It is

therefore convenient to consider separately the intensity of ascending radia-
tion:



"~ replaced by a system of equations which determines the functions I, and IL;:

[ T L

L@t =160 at 0<I< T,

f(here and below the symbol for the wavelength is omltted) and of descending
radiation

‘Iz(z,__!_’,_t)=1(z.6,1;) at 3 <0<,

0=nrn—208 and 0<3<_’1
2.

If, in addition, we introduce the functions

‘where

Tu (o) = 7 () r) at 0<o< %; 0<0'<i'-
ru b, 7) = 'l:("""'):‘f‘v at 0<o<< 3 9 2 ¥ Kx,

n i !

<6<u; Ogﬂ’ <-§-,
<

'fn(r,r)s'f(r. rk at

1'22("")—1'(" r) at 6<u;7<9'<"

(here, the angle ¥ = 1 - o corresponds to the ray T) then eq.(I.2.24) can be

605 8 8 —[1 —g(1 BT+ {1, (5, 1) (52 ) do +

+ o VL@ ) 1, ) de’ — I (v, ), ‘ (1.2.27)

—e0s 052 = (1—@@IB D)+ -\ 11 (5, 1) s (5, 7, 7) do'+

+

+4%SI* (%, 1) T (v, 7, ') do” — I, (3, 7). : )
+ (I.2.28

) It is easy to see that ¥;, = Vo, and 4,5 = 95y if the index depends only
on the angle of scattering. The boundary conditions for egs.(I.2.27) and
(I.2.28) have the form

LO.A=xu0 LED=u0) (1.2.29)

~ where %1 (r) and x;(r) are given functions.
In egs.(I.2.27) - (I.2.28), the angular variables change within the limitsg
0<8 < ~%—, 0 < ¥ < 2rm. Accordingly, the integration is extended over the :

surface of the upper hemisphere.

Along with the quantities I, and I, it is convenient to investigate the
ascending flux of radiation F; and the descending flux F,:
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Cemity
> e TI

Fi(t)= I, (%, 1) cos 0 sin 0dbdyp, (1.2.30)
Fy )= {1, (5, 1) cos 6 sin 6asay. | (1.2 31)f

The complete or resultant radiation flux F(T) is equal to

™ = ;
F(r) =\ § I, cos0sin bdtap = F, (x) — F, (x). (1.2.32)

2.3 Integral Form of the Transfer Equation

For simplicity, we will consider a medium consisting of only one substance.
Equations (I.2.27) and (I.2.28), in this case, assume the form

cm 052 — (4 — &) B(T) + kK, (x. 1) — I, (s, 1), (1.2.33)
al | : |
cosO#:(i——k)B(T)—}-kK,(t, r)—1I,(z, 1), (1.2.34),
where ;
o3
k = m ’
K, (t,r) = 4%81, (%, r) tu (5, 1, ) do’ +
+ 1 I, (v, ') yyu (v, 7, F') de’,
4n S : 1 (1.2.35)
K (v,n=71 S I (v, P') vy (v, 7, F) dov’ +
+ o\ L (6 F) 33 (3, 7, 7) do'. ' (1.2.36)
Then

We shall formally consider B(T) and K; (T, r) to be known values.
the solution of egs.(I.2.33) and (I.2.34) for given boundary conditions can be ;

presented in the form

Ii(e1) =1, (0, 7) e~ =<9+ (1 — k) sac 0 | B (1) e~ --hsecodt
) |

+ ksec 8§ K, (t, r) e- -0 gy, (1.2.37)

v

I(v,r) =1, (v", r)e- "-sec® 4 (1 — k) sec OX

o
T

X 1B’ (l) e~ (-7)sec Sdi + k sec 0 K [’ r) e \t~=) sec edt‘
§ ) £a o) (1.2.38)
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The relations (I.2.37) and (I.2.38) for a known temperature T(z) and
therefore for a known value B(t) represent a system of integral equations for
the determination of I, (7, r) and IL,(r, r). If T(z) is unknown, the systems
(I.2.37) and (I.2.38) must be supplemented by still another equation, namely,
that for the heat balance of the atmosphere.

2., The Radiative Heat Inflow

, Let us compute the value of radiative inflow of heat into an element of ;
volume*. For this it is obviously necessary to compute the full amount of ab- |
sorbed and radiated energy and determine the balance between them. l

The full amount of radiant energy absorbed by unit volume is equal to
{a § ndeds.
0
The amount of energy radiated by a unit volume under conditions of local /2l

thermodynamic equilibrium is

o0

4x {08, (1) &

(]

From this, the radiative heat inflow Q(T) becomes

Q) =[%§ 1 (v, Ndodh — 4 5B, (1) dr. (1.2.39)

A state of radiant equilibrium exists at Q = O. Otherwise, Q(T) is one of the
components of the total heat talance of the medium which can be written in the
form of

T ., =
cppﬂ_'o_*_oy (102.14-0)

where Q is the heat inflow due to other forms of heat exchange. For instance,
in the case of turbulent mixing:

6:%]@01{)00 : (IOZQM)

52'
where € is the potential temperature.

The system of equations (I.2.37), (I.2.38), and (I.2.39) or (I.2.40) is a
closed system and makes it possible to determine three unknown functions
I1(79 r)’ (T, r) and T(t).

# The radiative heat inflow is here determined for the case of one absorbing
and scattering substance.
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let us substitute in the right-hand side of the relation (I.2.39) the ex-
pressions of intensity (I.2.37) and (I.2.38). This will yield

o0 2= —;_
Q= Six {S § U2 0, ) e+ 1, 5 (7, )X 0 "] sin 6dBdy
o 2

= .
znz

+ Ky j S sec 0 [S Ky a(t, 1) eec®G-0dt + SKg A (t,7) e “"’d‘] i

mei B (1) e—wlv—fldt—w;(r)}dx

O Cmmyto| o

. o
x sin 6d8d% 4 (1 — k) §
(I.2.42)

We will introduce the so-called integral exponential functions or Gold's func-
tions¥*:

- |
En(z)zs v dy. (102014-3)

Obviously, . 1 ‘
) o _. . i
Jeosrtem=ctsintdd = [ rdp = Fua(@) (0= —1;0;4,..0).
0 1 :

From this, We nave . Qﬁ

n

}B 0 §sec0e-|"”"°'d¢ = fs (O E, (v —t])de, '

after which the radiative heat inflow can be presented in the form of

oo an 2 ‘

e = S {S ) [’*-1 O,r)emoct + I, (3, r)e-=m-mrmect
[ 1}

+ o see § (S Kiatt, ')e“""”"d‘ +SK2 A (t, e f—rnec'dt)]

et

xsin 6d0dtp+2n(1“"x)SBa ) E, (lr—tl)dt 4xBy (T)} (I.2.44)

If we assume

L0, =B,0), L 19)=0 v(v,rr) =1,

we will obtain the following expression for the radiative heat inflow

% The aspects of the Gold function are described elsewhere (Bibl.22, 23).
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(o ™

0 =25 (B OE O + b K OB (v —tha+
+ ) \Br O By (5 — 1) dt — 28, (9] .

0

(I.2.45)

Section 3. Special Form of the Transfer Equation

Below are considered three spectral regions: the visible (0.35 < A < {
< 0.75 p), the near-infrared (0.75 <\ < 2.5 u), and the long-wave (2.5 < ) <
< 4O 1) as well as two forms of media: a cloudless atmosphere and a cloud layer.
We will select special forms of the transfer equation corresponding to each of
the above cases. In this, we will always refer to monochromatic radiation
(the subscript A is omitted).

3.1 Cloudless Atmosphere

l. Visible region of the spectrum. Here no noticeable absorption bands of
atmospheric gases occur. The atmosphere can be considered as a medium in which
scattering of light takes place on molecules of air and on aerosol particles
and apparently also absorption of solar radiation by the aerosol. We are talk-
ing about absorption by dust since water in the visible region of the spectrum '
absorbs even less than water vapor (see Sect.3.2). V.G.Kastrov (Bibl.2L) in-
vestigated the integral absorption of solar radiation by dust and, in a number
of cases, detected noticeable amounts of absorbed energy. However, in other
cases there was no absorption. It is not known to what extent this absorption
can be ascribed to the visible region of the spectrum. In addition, the ab-
sorptivity of dust is as yet almost uninvestigated. Therefore, absorption by
dust is not considered in this book.

Under the described condition, eqg.(I.2.2)) assumes the form

°°“§-£=4%§I(r- yy(e,rr)de —I(x,r), | (1.3.1)
where 7 o /26
| = §E,(z)d.—,, (I.3.2)
113
;(z) = °R>P_+ SaPas (1.3.3)

_ OpTg +3.T,

=T (1.3.4)

In measuring the scattering properties of a real atmosphere, the values O and v
obviously can be directly determined.
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The boundary conditions of the problem under consideration are as follows:

1. Condition of incidence of a parallel beam of solar rays on the upper
boundary of the atmosphere:

I, (. ) = asb (r, 7o)

(I.3.5)
where §(r, ry) is a delta function having the property
Sf(r)b("v re) de =f(r@)
2. Condition of reflection of radiation from the Earth's surface
FL(0) = qF, (0). (1.3.6)

If the light reflected from the Earth's surface is subject to Lambert'!s law,
i.e., does not depend on direction, then the intensity of reflected radiation
is determined from eq.(I.3.6):

11 (0, ") = % Fz (0)

It appears convenient to separate, in the sought value I(t, r), the
scattered light from direct solar light. For this, we will assume that

1 _
(W) =1(r4 I, (v, r), (I.3.7)

where I, (T, r) is the intensity of a parallel beam of solar rays, determined

from the equation ol
cose—l.-.—I‘,

dv (I.3.8)1

The solution of eq.(I.3.8) for the boundary condition (I.3.5) has the form

1, = nsd (r, ro) emec s (), (1.3.9)

After substituting eq.(I.3.7) for I, expressed by eq.(I.3.9) in eq.(I.3.1) and
separating the intensity of ascending scattered radiation I, , from the de-
scending radiation I ., we will obtain the following system of equations for
determination of the quantities I, , and L, (in what follows, the subscript r
is omitted):

cos 0 a,d—’r‘ = 4—;- S Ii(x,r)ru(r,r, ryde' 4 %‘Slg (v, r)Ma(t, r, r)de’ —

<+

—1I,(x,r) + :_j;_ e Xy (1, 7, 1), (1.3.10)
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al
— cos 02 \1 (%, ') 71 (5, 7, F) do’ +

o

+

. 1 '
"i";,;& Iy (0, F) Yo (v r, ) do'— Iy (v, 1) + %e"m“"""m (v.riro).

(1.3.11)
2. Infrared region of the spectrum. Here, absorption by water vapor /27
(in the bands a, 0.8 u, por, %,Y¥,0; see Sect.55 and scattering on aerosol

particles occurs, with respect to which molecular scattering can be neglected.

Equation (I.2.2}) assumes the form

cosea-'%‘t'—i’=‘»"4‘;«’gl(r. N Ya (v, 1, r)de’ —1I(t,7), (1.3.12);
where
w(r)—-~——5———, (1.3.13)
+
T= S la, (2) + 6, (2)] dz. (I.3.ll+)fi

The boundary conditions in this case remain as before.

- 3. long-wave or heat radiation region. Here it is essential to take into
account the radiation of the atmosphere itself and the absorption in the bands

of water vapor and carbon dioxide. Scattering can be neglected although,

strictly speaking, it must be taken into account for large particles of aerosol.

Equation (I.2.24) is presented in the form of

of :
CIE=Bm) (1.3.15)
where

(1.3.16).

We will discuss in more detail the formulation of the boundary conditions
for this case.

When the density of all absorbing substances along the upper boundary of
the atmosphere becomes zero, it is natural to assume that the intensity of the
descending long-wave radiation at this level is also equal to zero:

L, =0 0<0<3. (1.3.17)

The latter condition is assumed in all papers dealing with the investiga-
tions of long-wave transfer in the earth's atmosphere (see, for instance
Bibl.25). However, in investigating the radiation transfer in the troposphere
(and it is precisely with this case that the greater part of the work done so
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far was concerned) the conditions (I.3.17) contradict the recent data on the
distribution of water vapor with height and the results of measurements of radi-
ation flux at the tropopause level.

Table I.3.1 gives the ratios of descending radiation flux F, to ascending .
flux F; at the tropopause level according to measurements made by Suomi et al
(Bibl.26) in five cases: Case 1 represents a single summer night; Case 2 - also
a single night but under winter conditions; Case 3 ~ a cloudy winter night (a
.cloud was observed from the upper boundaries at the 720 mb level) Case L -
average winter data; Case 5 - average summer data.

TABLE I.3.1
n % 1 \ 2 \ 3 l 4 5 ;
F3|Fy, ‘ 31 ] 39 ‘ 38 l 27 20

We see that the ratio Fy/F, does not change significantly under various Z__
conditions and that the value F, is not small compared with F,.

According to the paper by Brewer and Houghton (Bibl.27), the ratio F,/F,
can also be computed yielding a value of 6-7% in the case of a cloudless sky.
However, this result must be approached with caution since the above paper
(Bibl.27) gives no data for an accurate determination of F;/F;. From the data
of this same paper, it also follows that a cloud located immediately below the
tropopause will cause an increase in the ratio F;/F; at the tropopause level by
a factor of about 1.5 - 2.0. This can be explained by the decrease in F; from
a value that brings certain components of radiation of the lower heated parts
of the atmosphere up to the radiation of a black body at tropopause temperature.

Therefore, in considering the transfer of long-wave radiation in the tropo-
sphere at the upper boundary, it is necessary to prescribe an intensity of de-
scending radiation other than zero and to estimate it from data of distribution
of H;0, CO;, and of temperature in the lower stratosphere. An example of such
an estimate will be given in Chapter VII.

In deriving the boundary condition at the Earth's surface one usually
utilizes one of two hypotheses (see Bibl.25).

1. The Earth radiates like a black body, i.e.,

1,4 (0,7) = By (T,), (1.3.18)

where T, is the temperature at the Earth's surface.
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2. The Earth radiates like a gray body, i.e., the radiation of the Earth,
for each wavelength, differs by a constant factor 6§ from the radiation of a
black body at the same temperature. In this case, according to Kirchhoffts
law there must exist the relation

L©0,r) =88, + 1 (1 —8) F, (0. (1.3.19)

From the analyses of radiation of the Earth's surface made elsewhere (Bibl.25),
it seems that the condition (I.3.18) is better satisfied so that we will use it
below. :

3.2 The Cloud layer

1. Visible region of the spectrum. In the visible region of the spectrum
within the cloud layer, there is scattering on water droplets with respect to
which the molecular scattering can be neglected. The transfer equation assumes
the form of eq.(I.3.1) where now o(z) and v(z, r) are the total coefficients
of scattering and the scattering indicatrix of droplet water, taking the
particle-size distribution spectrum into consideration (see Sect.4.2). The :
‘boundary condition consists in stipulating scattered radiation arriving at both
‘boundaries of the cloud layer and a parallel beam of direct solar radiation in-
.cident on the upper boundary of the cloud.

i

, We neglected the absorption of light on water droplets and water vapor in
the clouds. It would seem that, in view of the large scattering power of
clouds (see Sect.4) and the attendant large distances covered by the light in-
side the clouds, the amount of absorbed radiation would be appreciable even at !
a low absorptivity of the droplets and the vapor.

The computation carried out in Chapter III shows, however, that thig is

not so. Actually, Table I.L.3 together with eq.(I.h.1l) gives values of oy,
in the visible regions of the spectrum which lie within the limits

3-10™° hm~1 < 0g,n << 31078 k-1,

Let us assume that the absorption coefficient of water vapor in the [22

considered case is 50 times greater, as is more or less the case in bands a and|
pot of the near-infrared region. Then,

1077 km 2 (Ggpn + Fo) <107 b1y

At T = 30 km ' (see Sect.l), this yields

=110 < k< (1 — 1-1077),
where .

~

k=::,—~-'7~—.
6 -} o -}
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Comparing these values of k with those given in Chapter III and with the
corresponding amounts of absorbed energy we see that, in the visible region,
the absorption is negligibly small.

2. Near-infrared region of the spectrum. In this region, scattering and
absorption on water droplets and also absorption in the water vapor bands takes
- place. The transfer equation assumes the form of

a1
cosﬂa—‘——-TSI(r, F) g (6,7 ) do’ — I (5,7),

(1.3.20)§

where z - - |
=G @ +% @ +5 @1 ds, k (1.3.21)

0@ =D (1.3.22)

a, (2) 4 2y, (2) 5, ()
The boundary conditions here are the same as in the previous case.
3. Region of thermal radiation. Unlike under the conditions of a cloud-

less atmosphere, here the scattering of long-wave radiation must be taken into -
account along with absorption. The transfer equation then assumes the form of

(1.3.23),

-1,
@B+ T

cose

where ©(z) and T are determined by means of egs.(I.3.21) and (I.3.22).

In deriving the boundary conditions for this problem, it must be kept in
mind that long-wave radiation is one of the components of the heat balance of
the atmosphere. On the interface between cloud and ambient atmosphere, the
conditions of equality of heat flow on both sides of the boundary must apply.
According to Kuznetsov (Bibl.28), this condltlon’taking radiation and turbulent’
heat exchange into consideration) 1is presented in the form

1)
F(l) + cp k(l)aT( — F(3)+ Cngt(z)a—g . (IoBo%)

The relation (I.3.2}) can be replaced by stricter conditions of equality
of separate heat flows in the ascending and descending direction:

F(l) =AF(1) 1—A4 F (2) (l)a’ru).
' HU=D R ek (1.3.25)

2 i
F® = (1 —A)F + AF® — cok T2 (1.3.26)
Section L. Optical Properties of Clouds /30

The diversity of the problem described in the preceding Section requires
for each solution information on the coefficients of absorption and scattering
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and on the scattering indicatrix of atmospheric gases, water droplets, aerosols
and ice crystals.

The optical properties of water droplets were investigated mainly from a
‘theoretical viewpoint and almost no experimental data are in existence. The
optical parameters of a cloudless atmosphere, conversely, were determined mainly
experimentally. The optical properties of real clouds were insufficiently in-
vestigated experimentally and were almost never determined by calculation. The
optical characteristics of ice crystals have never been investigated at all. §

TABLE I.L.1

A p m x A, B m x A, p m x

4.0 | 1.338 | 0.0015 10 | 1.196 | 0.0368(0.056) | 35 0.1680

4.5 } 1.343 | 0.0096 (0.016) | 12 | 1.487 | 0.2221 (0.247) § 40 0.1752

5.0 | 4.330 | 0.0100 14 | 1.300 | 0.4130 45 0.2606

9.9 | 1.300 | 0.0087 16 | 0.380 | 0.4720 S50 3

6.0 § 1.324 | 0.4341(0.101) | 18 | 1.505 | 0.4189(0.427) § 55

6.5 1 1.334 | 0.0969 20 | 1.530 | 0.3599 60

7.0 | 1.327 10.0225(0.045) § 22 | 1.530 | 0.3072 65

7.5 | 1.310 | 0.0228 2% | 1.490 | 0.2608 70

8.0 | 1.293 |.0.0232(0.048) | 26 | 1.410 | 0.2272 155

8.5 | 1.280 | 0.0243 . 28 | 1.390 | 0.2114 .80 d

9.0 | 1.264 | 0.0261(0.050) | 30 | 1.380 | 0.1874 85 ,
© 9.5 | 1.240 90 i

0.0289

In this Section, the optical properties of water droplets in real clouds
are discussed. The next Section is devoted to absorption and scattering in a
cloudless atmosphere.

L.l Optical Properties of Water Droplets

The principal results of the theory of electromagnetic waves describing
the scattering and absorption of light by a particle are outlined in the mono- -
graphs by K.C.Shifrin (Bibl.29) and of Van de Hulst (Bibl.30).

On the basis of this theory, numerous calculations have been performed up
to now on the optical characteristics of a water droplet¥*, which were tabulated

2ra and according to the refractive index of

according to the parameter p =

% By optical characteristics of a separate particle or of an element of volume
are meant the absorption coefficient, scattering coefficient, and scatter
indicatrix. In the case of an individual particle, the first two quantities
can be represented by the corresponding effective cross sections.
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a droplet n =m - ix.

For orientation purposes relative to the computation results, the values
of m and » for a droplet in relation to the wavelength A = Lu are given in
Table I.4.1 (Bibl.31§ and in relation to the wavelength A < Lu in Table I.L.2

(Bibl.32).

We note that the imaginary part » of the refractive index (the so-called
absorption factor) is related to the absorption coefficient of liquid water @, |
by the relation , f

=TI (I.4.1)
TABLE I.L.2 /31
A, B m x AX, p m x i
%
0.4—2 - 1.33 0 3.4—3.8 1.42 0.014
2—2.4 1.29 0 3.8—5.5 1.33 0.013
3 1.41 0.175

* The values m and », at A\ = 3u are taken from another report (Bibl.29)
since Johnson (Bibl.32) gives no data for the interval 2.4 - 3.Lu.

~ Other reports (Bibl.29, 32) give values of » based on older measurements
of @, carried out by Aschkinass (Bibl.5L) and also by Rubens and Landenberg at :

s

Fig.Ihol Cicee —__.

1~ A =10p, n=1.22-0.061i;
’-—Kn?p, n = 1.33-—0.0404;
38— A=10p, n = 1.20—0.0372;,
f— =7, n=1.33—0.02305

rption

the end of the last and the beginning of the present century. Table I.4.l is
based on current data by Plyler and Acquista (Bibl.33) and by Cartwright
(Bibl.3L4). The differences in the values of » obtained on the basis of the old
and new data can be judged from Table I.4.l, where the values of » (Bibl.29)

39



which correspond to the old values of ;v are shown in parentheses. The Table
shows a two-fold discrepancy in some cases.

Because of this discrepancy, the values of the cross section for absorption
of the K. droplets may differ greatly as is shown, for example, in Fig.I.h.1 |
(Bibl.35) where the values K, are given for two wavelengths:A = 7u and A = 104 .
computed with the old (dotted curves) and the new (solid curves) values for x. z

]0.’ - M i 1 7 1
0 45 90 135 180°

Fig.I.4.2 Fine Structure of the Scatter
Indicatrix (0 - 50, m - 1.33)

Table I.L.2 shows that in the visible and in the near-infrared region of
the spectrum, up to X = 2.4u, the refractive index n is a real value; moreover,

TABIE I.4.3
Ap l 0.415 0.5 ‘ 0.6 ‘ 0.7 I 0.8 0.9 1.05 1.30
%108 \ 0.115 l 0.0596 \ 0.511 1 1.67 I 13.0 l 115 ‘ 299 1252

it is independent of the wavelength if A < 21, It follows from this that the
optical characteristics of a droplet here also are independent of the wave-
length and are determined only by the parameter o.

The absorption factor » does not, strictly speaking, become zero anywhere
in the examined region [see Table I.4.3 based on data by Shifrin (Bibl.29)].
However, everywhere except in the regions of the water absorption bands, at /32
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A 2 1.3u the absorption factor is small so that it can be neglected. At u = O"
the computation of the effective scattering cross section and of the scatter
indicatrix is greatly simplified.

TABLE I.L..L
<° ¥ (@) ®° ¥ (@) ®° ¥ (®) ®° Y (9) ‘
0 110768.6 70 547.27 140 1178.52 174 1198.165 §
10 76366.0 80 | 331.44 150 633.84 175 873.44 i
20 10142.7 90 99,640 160 643.554 176 458.67
30 5497.3 100 75.479 170 379.28 177 1765.50
40 6999.8 110 77.184 17 613.908 178 1740.38 ‘
50 2892.5 120 164.214 172 695.536 179 957.31 !
60 586.96 ff 130 86.697 173 474.56 180 ' | 1031.34 '

Almost all computations made thus far relate precisely to the

true refractive index.
where (Bibl.29, 30, 36 - 40).

A bibliography of pertaining papers can be

case of the
found else~

P
AX, u m x

1.00 | £.75 2.50 3.25 4£.00 8.7 5.50 6.25 7.00 1.7%
10.5—11.5 [1.14]0.10]0.32] 0.50 | 0.87 | 1.44 | 1.34 | 1.53 | 1.69 | 1.83 | 1.94 | 2.03
11.5—12.2 11.16/0.18]0,58| 0.99 | 1.34 | 1.60 | 1.80 | 1.94 | 2,04} 2,11 | 2.15 | 2.18
9.5—10.5 {1.2210.05]0.21} 0.50 ; 0.88 | 1.27 | 1.65 | 2.00 | 2.29 | 2.52-1 2.69 | 2.79
7.5—9.5 |1.2870.,04(0.21}.0.59 | 1.12 | 1.67 | 2.4812.60 | 2.91 }13.08 | 3.15 | 3.11
12.2—13 1.2810.23/0.83| 1,43 | 1.86 | 2.12 | 2,27 | 2.34 | 2.37 | 2.37 | 2.36 | 2.34
3.8—5.5 }1.33]0.01]0.43} 0.5511.27}2.052.77}3.33 | 3.66 | 3.72 | 3.57 | 3.28
6.5—7.5 [4.33/0.03|0.20] 0.67 | 1.37 | 2.08 | 2.69 | 3.13 | 3.38 | 3.41 | 3.29 | 3.06
43.0—15.0 |1.33/0.3011.10{ 1.78 | 2.15 | 2.33 | 2.40 | 2.42 | 2.41 | 2.39 | 2.37 | 2.36
3.4—3.8 1.42}0.01}0.49]/0.88 | 1.91 | 2,90 | 3.6 | 3.91 | 3.82|3.442.92 | 2.43

Detailed computations of the effective scattering cross section of a
spherical particle at n = 1.33, 1.40, 1.4} and o< 30 are given by Penndorf
(Bibl.36). In another paper (Bibl.37, 38), the computation of the scattering
function is carried to values of p = 40O, with special emphasis on large angles
of scattering. Giese (Bibl.39) gives graphs of the fine structure of the
One of these graphs is reproduced in Fig.I.L.2,

scattering index.

K.S.Shifrin (Bibl.41) showed that the scattering indicatrix of a droplet,
computed in first approximation of geometric optics for n = 1.33 and p = 100
passes along the center of the band enclosed by the upper and lower edges of /33
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the curve of type (I.4.2) for the corresponding value of o. This means that
for o = 100 and n = 1.33 the scattering indicatrix of a water droplet is well

described by the formulas of geometric optics without taking into account the
fine structure.

KS

4.0
3 f\

3.0

1.0 i
0 i

W@ 5 10 15 20 25 30 35 #0;5

Fig.I.4.3 Cross Section for Scattering, at n = 1.33

Coefficients of the expansion of the scattering functions in a series
according to legendre polynomials were computed by Chu et al (Bibl.40) which
makes this paper hlghly suitable for a numerical solution of the transfer equa—\
tions. The expansions are given for 09<n<<20; 1K<

TABLE I.4.5

p ‘ ]
8.5 | 9.25 | 1000 | 10.75| 11.50 | 12.25| 13.00| 13.75| 14.50 | 15.25 | 16.00 | 16.75 | 17.50}
2.10 | 2.15 2.19 2.22 12,24 1224 12.2512.25]|2.24]2.242.23]2.22]2.21 ’
2.20 1 2.21 2.21 2.21 12,21 12.2112.20]2,20{2.,19}2.,19{2.19| 2.18 | 2.18
2.84 | 2.84 280 12.75}12.65 257 |2.482.41]2.354{2.29|2.26]2.23 {2.22
3.01 | 2.85 2,68 2.51]2.382.282222.20|2.212.23}2.27]2.3012.32
233231 2.30 [2.29)2.28|2.27|2.26|2.252.25{2.242.23 | 2.23 |2.22
2,92 12.56 | 2,26 |2.06|14.97|1.98]2.07|2.2212.39|2.53]2.63|2.64 ]| 2.57
2.80 | 2.54| 2.34 [2.21 2.6 |2.16|2.21|2.29|2.36|2.42|2.45 | 2.44 | 2.40
2.34{233 ] 2.3 §2.30{2.29{2.282.272.27|2.26|2.25| 2.25 | 2.24 | 2.23
2091 4.98{ 207 12.28]|250/2.65}2.69|2.60]2,43}2.24]2.41]2.07}2.41"

From the viewpoint of cloud optics the lack of data for o > 30 constitutes
a drawback (in the study of clouds it is necessary to know the scattering func-
tion for values of p < 100).

We will give two results of the theory of scattering on a spherical
particle, covering the case of the true refractive index and extending the pos-.
sibility of making use of Tables.

1. The optical characteristics of the droplets are invariant (with an
error of the order of 1% with respect to the parameter)
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8=2(n—1). (I.4.2)

2. Van de Hulst (Bibl.30) derived a formula which, while disregarding the
fine structure, describes the dependence of the scattering coefficient on 6§, ;
within the entire range of variations in & of interest here. This formula
reads

K, =2m=[1—%sinzo+%zi]. : (1,4,3)§

This summary indicates that, in the region of pure scattering in which
n = 1.33, the optical parameters of droplet water are known. As an example, a .
graph of the cross section for scattering, plotted with the computational data
bty Straton and Houghton [supplemented by Houghton and Chalker; (see Bibl.29)l].
is given in Fig.I.4.3, while the angular distribution for scattering at n = 1.33
and p = 65 according to other data (Bibl.38) is given in Table I.4.L. Here, /34
Table I.h.L4 gives the scattered light for X = 0.5u for an elementary volume of
a monodisperse cloud containing droplets of a radius of a = 5.2u.

The situation with regard to the long-wave region of the spectrum is con-
siderably worse. Computations on the basis of Mie's theory for a complex re-
fractive index are laborious, even for electronic computers and have thus far
‘been carried out in an absolutely insufficient volume. It should be pointed
‘out also that there is no invariance of the optical characteristics with re-
spect to the parameter p or & in the absorption region.

Tables I.4.1l - I.4.2 indicate the dependence of the refractive index on
the wavelength, which makes it necessary to perform the computation separately
for each value of A and a.

The effective cross section for attenuation can be calculated in a very
simple form:

K=KS + K“.

Table I.L4.5 gives values of K for various m, and #, at selected values of
the parameter p. Shown also are the corresponding values of the wavelength
intervals A\, u. These data are taken from another paper (Bibl.32) and are
based on Mold™ (see above) values of the absorption coefficient of liquid water.

In the solution of the simplest problems of the transfer theory, namely,
determination of the transparency of clouds or attenuation of the light source
over short distances where multiple scattering can be neglected (see Chapter II,
Sect.7.1), it is sufficient to know the attenuation factor. In this case, the
computation can be limited to the data in Table I.4.5. As shown by egs.(I.3.1),
(I.3.20), and (I.3.23) all other problems require a selective assignment of the
attenuation factor, the scattering coefficient, and the scattering indicatrix.
Until recently, the only data of this type for the case of a complex refractive
index, i.e., in the region of absorption, were the results of computations by
K.S.Shifrin (Bibl.42, 43). In one paper (Bibl.A2), the effective cross sec—
tions for scattering K., for absorption K., and for back scattering K, are
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computed by the Mie theory for a droplet radius of a = 6.265u. The same is
done for droplets with a radius of a = 12.53u in his second report (Bibl.A3).

TABLE I.L.6
" Ky Ko K, r rg
3 1.110 0.894 0.128 . 8
3.4 1.544 0.925 0.135 10
4.5 2.146 0.500 0.134 15 16
6 1.743 1.127 0.047 36
7 2.595 0.704 0.027 95
8 2.967 0.234 0.042 70
9 © 41.863 0.630 0.050 36 28
10 0.925 0.575 0.014 65
11 0.465 0.768 0.008 56
12 0.632 1.134 0.017 36
13 0.792 1.236 0.024 32
15 0.887 1.376 0.034 25
18 1.013 1.416 0,046 21 24

With these data it is also possible to estimate the degree of elongation /35
of the scattering indicatrix in the absorption region: I

r K, — K, ;
= Kl ’ (I'h'h) ‘
TABLE I.L.7
A, Kq K, K, r r, ‘;
i
9 2.052 0.910 0.548 3 . 16 ,
10 1.590 0.777 0.223 6 4§ - ,3
13 1.864 1.264 008 | 215 | 25
15 1.450 1.063 0.128 10 - i
18 1.193 1.379 0.040 29 28 k

Values of Ky, Ko, K; and of I' for a = 6.265u are given in Table I.4.6
(Bibl.43), and for a = 12.53u in Table I.4.7 (Bibl.42). The last columns of
these Tables contain the values of Iy which is the degree of elongation of the
indicatrix in the region of pure scattering for n = 1.33 and the corresponding
values of a and ).

A comparison of Iy and T shows that, in the presence or absence of absorp-
tion, the indicatrices in many cases do not differ greatly with respect to the
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integral effect. It is also shown (Bibl.4O) that, at » < 0.001,the scattering
indicatrix differs little from the case » = O, i.e., from the case of pure

Fig.I.L.4 Cross Section for Absorption at n = 1.29
1-7‘(-:1029;2—K=006[+5;3-K=Oo322;

el

a/

L - n = Q.0645
i 8
: 15§
33—
1.21
. 12
rtob 62
o8} |
0.6+ .
oul- / E
Io/v :
f 7 8 1
! -
,,,
g | 1 1 1 1
g .0 2.0 3.0 40 5.0
_orma
P==x

Fig.I.L.5 Cross Section for Absorption

scattering. In conformity with eq.(I.4.1) the scattering indicatrices which
correspond to # = O can be utilized up to values of @, which do not exceed
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Omn -
h) e’ /gm, i.e., in the near-infrared region of the spectrum (up to } =

= 105”*)0

The still-unpublished data of Houghton's computations of the value of K, /38
for m = 1.29 and for different values » are given by McDonald (Bibl.Lh). These
values are shown in Fig.I.h.L. According to Table I.L.1l, the values X = 8u
and » = 14 u correspond to m = 1.29. However, the values of x selected by

H.S
3r
2
1 ——
\\\\ .‘|
~
i i | 3 :,
g 10 20 30 |
ME

Fig.I.4.6 Cross Section for Scattering in the
Absorption Region

Houghton make it possible to utilize his data only for A = lhu. In this case,
an interpolation between the curves » = 0.322 and ® = 0.645 in Fig.I.L.L makes
it possible to determine the absorption cross section of droplets of any radius
a < L2u.

The values of K, for a series of wavelengths tabulated according to the
parameter p within the range O < p < 5 were computed approximately by Stephens
(Bibl.31, 35) utilizing recent data on n. These results are presented in
Fig.I.4.5 and in Table I.4.7. Unfortunately, Stephens did not compute the
effective cross sections for attenuation K, so that his data must be used to-
gether with the data in Table I.4.5 which is not quite correct because of the
difference in the wavelength and in the values of » (see above). A comparison
of the values of K, in Tables I.4.6, I.4.7, and I.L.8 for the same values of a
and A shows that these values, in a number of cases,differ by a factor of 2
to 3, principally in the region of weak absorption. One of the causes of this
discrepancy was discussed above - the difference in the values of #, in recent
and old data on the absorptivity of liquid water. The second reason could be
the approximate nature of the computation method used by Stephens which was
developed by Aden (Bibl.35).

L6




eIz’ v Vel 90L6'0 260L°0 GLYI'0 £8260°0 £201°0 ¥%8s°0 €18%0°0 ¥y
091} LA ] 6L76°0 02L9°0 €9¢1°0 0€£680°0 0£€£60°0 GeIS’0 861%0°0 el
660" ¥ 660° ¥ 0288°0 0€€9°0 ¥521°0 €2180°0 8578070 624¥'0 86L€0°0 (48]
107V AN L1€8°0 9165°0 oﬁﬂ? 62eL0°0 109L070 , w«@.o 90%€0°0 Vi
6€66°0 810"} ¥%08°0 L69S°0 ¥801°0 L7690°0 LLYLOTO 601¥°0 2120’0 Q0¥
£Y56°0 6986°0 asLL’o oLyS o %201°0 2€590°0 6518070 868€°0 020€0°0 0y
€216°0 92860 osyL'o $€258°0 81960°0 8€190°0 LEEI0"0 ¥89€°0 1€820°0 ¢6°0
LL98™O 2616°0 LZILT0 066%°0 g1160°0 8%L50°0 2265070 89%€°0 €%920°0 06°0
L028°0 6%.8°0 98L9°0 9eLY’0 ¥%680°0 §9€30°0 G1980"0 042¢€°0 69%20°0 g8'0
9tLL"0 G1€8'0 82%9°0 LLY%'0 786L0°0 €86%0°0 ¥116070 £€08°0 8L220°0 08°0
802L"0 £98L°0 2809°0 80CT% "0 eT%L0°0 0F9%0°0 €CLY070 %182°0 €07120°0 SL'o
G899°0 S9EL'0 699870 LE6E™ D $L890°0 8%2¥0°0 TYEV0TO 865270 2€610°0 0L'0
%319°0 Ge89°0 892570 8G9E"0 7e£90°0 888€0°0 896€0°0 ¥8€2'0 %9L10°0 S9°0
619S°0 62£9°0 G88%°0 0LEE0 LBLS0°0 T%G€0°0 L19€0°0 yL12°0 CH910°0 09'0
880570 06L8°0 _YWYo 680£'0 18220°0 002€0°0 LS2E0°0 6961°0 LY%10°0 gg'o
609%°'0 162870 G8O% "0 g18z’0 TLLY0°0 1682070 262070 SLLYO 20€10°0 050
SLOY0 STLY'0 $29¢€°0 0282°0 ¥62%0°0 99520'0 16852070 LLSY O €S110°0 s7°0
19S€°0 ey’ 0 861€°0 622¢°0 6%L80°0 16220°0 GLZZ0 0 T8E1°0 0J010°0 070
990€°0 609€°0 8LLT"0 %6170 6GZ€0°0 Ly610°0 6961070 61170 s-0F-61L°8 ¢e'o
0652°0 - L90E°0 99€2°0 09¢E"0 TLLZ0°0 29910'0 S9910°0 41120} e-0F°L88°L 0g'0
0g12°0 9€82°0 635610 VLEL0 G6230°0 G9€10°0 YLEVOTO 19€80°0 ¢-07-%60°9 A1)
¥891°0 ¥10z'0 8691°0 A LZ8T0°0 ¥8070°0 06010° 0 62990°0 - +=01°GE8'¥ 020
28ci o 106170 €910 68180°0 GYe10°'0 e-07°680°8 e-01-¥21°8 9£6%0°0 . e-03-€09°¢ gr'o
98780°0 %9660°0 92LLO™0 9%¥50°0 s-01'GL0°6 e-07°89€°S e-0F"16€°S ¥L2e0°0 e-0F°16€°2 1) 1]
ggIv0'0 L96%0°0 %68€0°0 61L20°0 s-07-025°% s-0F-LL9°C ¢-07°889°¢ T€910°0 «07-26}° ¥
i 41 1] (4] or 8 L g9 - [ .
9
A i B

8'4°I TGV

L7



o g s
ove'y ¢ 908"} - 182°1 981} ~_pgoy'o [08v'0 122 82iz'o z'e
L88°7 vie'y e82' Y Z81'}F 16870 601%°0 8021 6802°0 0°¢
1981 7430 4 882°1 Ly Y 808E'0 160%°0 96T} 1202°0 8y
LLE'V 6281 062V Wwy'v a%9e'0 $396€°0 -1 2 1 v81°0 9y
98g" ¥ 9gg" 1 - 2621 €91} ; Wwye'o eyL8'0 yLV'E 2281°0 'y
60%' ¥ ey €62 ¥ GG Y _ 82660 29880 A8 LeLY0 (487
LYY 2ee’y £62° ¥ Sy Y L61€°0 YEYe 0 eer°y 29910 0'%
01%*y 86¢° T 7621 £e1° Y ZY0E'0 6828°0 g1 T ¥831°0 8'¢
129} yoe°7 6821 0zZ1'}y 998€°0 2820 S608°0 €60V 8L%1'0 9'¢
8Ty 1 69€°1 S8Z' 1 Y01'} LLOE'0 02L2°0 2162°0 990° ¥ 98€1°0 v'e
o9gy' ¥ eLe' 7 6L2'V 980"} LLYE'0 LLSZ'0 €922°0 ¥e0' ¥ ¥181'0 44
(147204 98"} 692" 1 %90'V 992¢°0 0wz'o L0920 200° ¥ €€2H°0 0°¢
oey*y yLe'y 96z" ¥ 8E0° ¥ L80€°0 81220 L6€2°0 7896°0 ¥211°0 8'C
1520 0Le'y 682"V 0¥ 96820 0%02°0 1812°0 9%26'0 9101°0 9T
8271 L9e°7 622" 1 1266°0 8612'0- 7961°0 0802°0 1006°0 £9960°0 i 4
vy’ £9e'1 8127 ¥8L6°0 96920 ¥681°0 2102°0 2sl8'0 L%£60°0 ¥°C
61’ 8GE'} 8021 9096°0 , 0862'0 0Z81°0 1%61°0 S188°0 £1060°0 €2
6071 18} 1611 VI96°0 [ LEYZ'0 £rL10 99810 68780 $5980'0 z'C
1861 {0 981"} 6968°0 ¥612'0 6551°0 2891°0 86LL°0 CYLLO'O 0'2
£9€° 1 L'} (1308 0¥1L8°0 69020 98%1°0 69S1°0 L0SL™0 £61L0°0 6°F
gve’y 662"V 601" 1 9z%8°0 ¥Y61°0 196170 15710 691L°0 81990°0 8"}
1281 LTy 080"} 6118'0 - T281°0 6%21°0 £EEL'0 1829°0 £9090°0 L'}
€831 1821 0°) 18LL°0 YOLY'0 R <4220 72210 8L€9°0 ¥£880°0 97
LET'V 022"} 010°} 8YYL'0 685170 1901°0 61110 68650 1%050°0 (1
m
81 s} ] 2 oF 8 L ) ] ,

(pua) g**°1 mumﬁ.




TABIE I.4.9

a, p nat* K, p° =o', Ky, p* na* K, . p* nat K, p* ®a* Ko, pt %a* K, pt
T = 253° .
1.0 8.16-10"2] 6.27-10~4] 8.10-10-%*| 8.13.10-2 ¥ 8.06-10-%
1.5 0.285 6.79-10-2| 0.278 0.284 { 0.217
2.0 0.705 3.49-10| o.670 0.707 - 0.668
2.5 1.445 0.116 1.329 1.452 1.323
3.0 2.602 0,292 2.310 2.622 2.299
3.5 4.307 0.629 3.677 3.349 3.660
4.0 6.676 1.205 5.471 6.752 5.443
4.5 9.817 2.097 7.720 9.9%0 . 7.671
5.0 13.833 3.385 10.448 14.018 3.634% 10,384
5.5 18.837 5.1451 13.685 19.103 5.507 13.596
6.0 24.906 7.459 17.447 25.272 7.945 17.327
6.5 .| 32.112 10.360 21,751 32.596 11.002 21.594
7.0 40.504 13.897 26.607 41.124 14,719 26.405
7.5 51.938 19.661 32.278 52.965 20,904 32.060
8.0 63.320 25.023 38.297 64.579 26.552 38.028
8.5 76.094 31.221 44,873 77.613 33.067 44,546
9.0 90.263 38.264 51.999 92.059 40.452 51,607
9.5 |105.84 46.170 59,668 107.93 48.723 59.205
10.0 | 122.82 54.954 67.871 125.22 57.89 67.330
T = 258° T = 268°
1.0 '8.15-10-%;  6.69-10~%; 8.08-10~2] 8,11.10°3| 7.606-10~%| 8.034-10~3
1.5 0.285 7.23-10-3} 0.277 0,284 8.175-10-%| 0.276
2.0 0.706 3.71-102|  0.669 0,707 4.161:10"*| 0.666
2.5 1.449 0.123 1.326 1,455 0.136 1.319
3.0 2.612 0.307 2.305 2,631 0.339 2.293
3.5 3.328 0.658 3.670 4,368 0.720 3.649
4.0 6.714 1.256 5.459 6,788 1.363 5.425
4.5 9.879 2.179 7.700 10,000 2.351 7.649
5.0 13.926 3.507 10.419 14,109 3.764 10.345
5.5 18.971 5.327 13.644 19,236 5.693 13.542
6.0 25.089 7.698 17.3%1 25,454 8.198 17.256
6.5 32,354 10.677 21,677 32,837 11.336 21.502
7.0 40,814 14.302 26.512 41,433 15.145 26.288
7.5 52,452 20.276 32.176 53,479 21.545 31.934
8.0 63.950 25.780 28.170 65,209 27.337 37.872
8.5 76,854 32.136 44.718 78,372 34.013 44.359
9.0 91.162 39.350 51.812 92,957 41.5T 51.385
9.5 | 106.88 41.438 59. 447 108,97 50.026 58.945
10.0 | 124.03 56.415 67.612 126,42 59.390 67.029
T = 273° T =283 :
1.0 8.08-10%| 8.09-10~%| 8.00-10-j 8.02.10°%] 9.13.10°%|  7.94.10-*
1.5 0.284 8.68-10*| 0.275 0.282 9.75-103| (.273
2.0 0.707 4.40-103| 0,663 0.707 4.91-10-%! 0.658
2.5 1.458 0.143 1.315 1.463 0.159 1.304
3.0 2.640 0.355 2.285 2.656 0.390 2.266
3.5 4.388 0.752 3.636 4.426 0.820 3.606
4.0 6.824 1.119 5.405 6.896 1.537 5.359
4.5 10.060 2.444 7.619 10.180 2.630 7.554
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TABLE I.4.9 (end)

50

ne® K, pt nat “5““. na? xa-'"’ =a® K, p* nat KJ, pt nat K, p*
T =213 T = 283°
5.0 |44.200-107% | 3,898.1072 ;10,302-1072) 14.384-1072| 4,179.10°% ; 10.206- 1072
5.5 19.368 5.884 13.484 19.637 6.283 13.354 !
6.0 15.637 8.458 - | 17.179 26.008 9.000 17.008
6.5 33.080 11.678 24,402 33.572 12.388 21.184
7.0 41.745 15.582 26.162 42.377 16.488 25.889
7.5 53.994 22.198 31.796 55.034 25.538 31,496
8.0 65.842 28.137 37.705 67.115 29.774 37.341
8.5 79.134 34,975 44.159 80.665 " 36.940 43,725
9.0 93.855 42,706 51.149 95.660 45,020 50,640
9.5 110.04 51.345 58.669 112.10 54.026 58.077
10.0 127 .64 60.902 66.710 130.00 63.969 66.029
‘ T = 278° T = 288°
1.0 8.06-10~2( 8.60-10~4| 7.97-10-2 7.99.-102) 9.68.-104| 7.90-10~%
1.5 0.283 9.21.10°3| 0.274 0.282 1.03.10-3 0.271
2.0 0.707 4.65-107%| 0.661 0.707 5.18-10%} 0.635
2.5 1.461 0.154 1.310 1.465 0.167 1.298
3.0 2.648 0.372 2.276 2.664 0.408 2.256
3.5 4.401 0.786 3.621 4.445 0.856 3.589
4.0 6.860 1.477 5.383 6.932 1.599 5.333
4.5 10.120 2.534 7.586 10.241 2.728 . 7.513
5.0 14.292 4,037 10.255 14.478 4.325 10.153
5.5 19.502 6.081 13.421 19.773 6.490 13.283
6.0 25,822 8.726 17.096 26.197 9.281 16.917
6.5 33.325 12.029 21.296 33.823 12 756 21 .067
7.0 42,059 16.070 26.029 42,699 19956 25.743
7.5 54.512 22.862 31.650 55.559 24,224 31.335
8.0 66.477 28,949 37.528 67.758 30.610 37,441
8.5 79.898 35.951 43.947 81.437 37.942 49,495
9.0 94.756 43.856 50,900 96.567 46,497 50.370
9.5 111.06 52.678 58.379 113 .15 55.386 57.765
10.0 128.80 62.429 66.376 131.19 65.521 65.671
T = 293° T =298°
1,0 7.96.10, 1.03.10-%; 17.86.10~) 7.92.10-2; 1.08.10~%; 7.81-40°%
1.5 0.281 1.09-10°%] 0.270 0.280 1.15-10%]  0.269
2.0 0.707 5.45-1072! 0.652 0.706 5.74-10% 0.649
2,5 1,467 0.175 1.292 1.469 0.183 1.286
3.0 2,672 0.4217 2.245 2,680 0.447 2,234
3.5 4,464 0.892 3.5 4.483 0.930 3.553
4,0 9,969 1.663 5.306 7.008 1,728 5.278
4.5 10.303 2.829 1.474 10.365 2.933 7.433
5.0 14,573 4.475 10.098 14.669 -~ 4,628 10.041
5.5 19.912 6.702 13,210 20.054 6.920 13.139
6.0 26,390 9.568 16,821 26.585 9,862 16.723
6.5 34.078 13.132 20,946 34.338 13.517 20.821
7.0 43,026 17.434 25.591 43.358 17,922 25.436
7.5 56.089 24,921 31.168 56.622 25.626 30.996
8.0 68.405 31,458 36.946 69.056 32.316 36.740
8.5 82.213 38.956 43.257 82.994 39,980 43.013
9.0 97.478 47.385 50,092 98.393 48.585 49.808
9.5 114.20 56.757 57.444 115.25 58.139 57.116
10.0 132.39 87.083 65.303 133.58 68.654 64.928




In one of his papers Stephens (Bibl.31) gives effective cross sections for
attenuation, scattering, and absorption for particles of a given size, which
are average for the long-wave spectrum in the range of 4 < A < 90y, The aver-
aging was performed by means of the formula

90p
S B, (T) Ky (A ¢)d

Kav= 2oz | (Loh5)

S B, (T) dA o '
“®" i

The computation was carried out for a set of values of radii and temperatures, |
These data are presented in Table I,4.9.

K.S.Shifrin (Bibl.43) computed the total volumetric attemuation factor ’f);
for a monodisperse cloud at a = 6,265., The value D, was determined by means of

DA = Eo,l + ;v,l + ;.,1.

The spectral interval (4 < A < 36p)was subdivided into segments A\ of a width

of Lp. First, the average values of K, and of K, and then the values of Gy +
+ Oy) for various values of liquid-water content P, were computed for each seg-
ment, The values &) were determined from the mass absorption coefficient yANN
of water vapors given in the monograph of K,Ya.Kondrat'yeva (Bibl.25); see !
Table I.5.2, It was assumed that the relative humidity in the cloud was 100%.
Thus, the coefficient '&',A was found to be dependent on the temperature., The
results of the computation of Dy (in km™') are given in Table I,.,10%,

Along with the attenuation factor, the scattering coefficient must be
known in solving the transfer equation. Such data, for a droplet with a radius
of a = 6,265, were obtained by K.S.Shifrin (Bibl.L2). His values are given in
Table I.L.6 and in Fig,I.L.6. This diagram yielded average values of K. from
which we computed Oy) for the same Ly spectral region for which the values of
D, are given in Table I.4.10. The values of Oy) are shown in Table I.A.11,

The computation of Gy, at given Ks)» was performed on the basis of the
formila

Gorm 2aPe
Py

where p, is the density of water (oy =1 gm/cm®) and a is the droplet radius.

* The misprint discovered in Shifrin's paper (Bibl.,3) for the interval

(8 - 12u) was corrected in Table I..4.10. Averaging of the quantities Ky =

= K + Ko (Bibl,4h2) in this region will yield K = 2 instead of K = 1.5 as had
been given by Shifrin (Bibl.43). ‘
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Average values of G, ax for the spectral regions shown in Table I.A.11
were determined from the relation

Aj4g

Oo. adA
~ Ai

s _———
o A 1’1’+1 - l’i

where A;, — A = 4;1.

In supplementing the enumerated data, we can give the following approximate
formla of Van de Hulst (Bibl.30) which makes it possible to compute the cross
section for attenuation (without fine structure) in the case when | m - 1] -0,
i.e., in the so-called approximation of "soft" particles

K@®n)=2—4"3 e=sin (8 — 1)+ 4("%) [cos 2 — e cos (8 — 22)1, |

(I.4.6)

he
where 38 = 2p (m _— 1), (Ioho'])
z = arc thn'—:T' , (I.h.B}
z=8" (I.h.9_)

- In comparing the computations performed by means of eq.(I.L.6) with the
exact data given in Table I.4.5, Deirmendjian (Bibl.L5) came to the conclusion
that the former could be utilized when m = 1,3, i.e,, for water droplets, by
introducing a correction factor D,(6, z) obtained from the formula

K (8,n)=(1+D)K @, n), (I.4.10)

where K7(6, n) denotes the corrected attenuation cross section.

Deirmend jian gives the following values Dy for various intervals of the /43
guantities 6: .

D, (5.8 =l U )+ 11— S | (I.1.11)

R P e . |

Dy(z, ) ="11f () + 11 55 at 5 (m en.<:sﬂ<g%_,.f (I.4.12)
Doy = [ i:3°fgz<6<$%. (I.a.13j
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TABLE I.4.10

qu/m'
1, °C
0.05 0.4 0.2 0.5 0.8 1.0
Ar=14—8p
—20 25.8 3.0 77.5 1 181 284 353
—10 36.1 '53.8 87.8 191 294 363
-5 44.5 64.7 96.2 199 303 372
0 55.0 73.2 108 214 314 384
5 7.7 88.9 123 227 330 399
10 92.5 110 144 241 351 420
20 156 173 208 311 M4 583
AL =8—12
—20 9.01 24.0 48.0 120.0 192 240
—10 9.02 24.0 48.0 120.0 192 240
—5 9.03 24.0 48.0 120.0 192 240
0 9.05 24.0 48.0 120.0 192 240
0 9.05 24.0 48.0 120.0 192 240
5 9.07 24.1 481 120.1 192 240
10 9.09 24.1 48.1 120.1 192 240
20 9.2 24.2 48.2 120.2 192 240
) AN =12—46 p
—20 13.0 25.9 51.7 129 206 258
—10 131 28.0 51.8 129 207 258
—5 13.2 26.4 51.9 129 207 258
0 13.4 26.2 52.1 129 207 258
5 13.6 26.5 52.3 130 207 259
10 13.8 26.7 52.5 130 207 259
20 14.6 21.5 53.3 13t 208 260
© AL =16—20 p
—20 15.7 29.1 56,2 137 218 272
—140 18.2 31.7 58.7 140 224 215
—5 - 20.3 - 33.8 60.1 142 223 277
0 242 36,7 - 63.7 145 226 280
5 . 274 40.6 67.6 149 230 284
10 32.3 45.8 72.8 154 232 289
20 48.4 61.6 88.6 170 251 305
AL =20—24 p
—20 18.5 N1 96.3 132 207 258
40 26,6 a8.2 63.4 129 245 i 265
—5 31.4 44.0 69.2 145 220 21
0 39.3 51.9 77.1 153 228 279
5 50.1 62.7 87.9 164 239 289
10 64.4 71.0 102 178 253 304
20 " 108 120 148 224 197 347
‘ A) =2%—28 :
—20 20.2 31.3 33.5 120 187 231
—10 31.2 42.3 64,5 131 198 242
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TABLE I.4.10 (end)
fo, g/m*
t. °C
0.05 0.1 0.2 0.5 0.8 1.0
—5 40.1 51.2 73.4 140 207 251
0 52.4 63.5 85.7 153 219 283
5 69.0 80.1 102 169 235 - 280
10 9.9 102 124 19¢ 258 302
20 . 158 169 192 258 325 - 369
—20 27.6 37.8 8.2 119 181 221
—10 48.5 58.7 9.1 140 201 242
-5 65.5 75.7 96.1 157 218 259
0 88.9 99.1 129 181 242 283
5 120 134 15 212 273 34
10 163 173 193 254 316 356
20 291 301 321 383 444 485
Al = 32—36 p
—20 - 297 39.6 59.4 119 178 218
—10 83.4 63.3 83.1 144 202 242
) 62,7 82.6 102 162 221 261
0 99.3 108 129 188 248 287
5 135 445 165 224 284 323
10 183 193 213 272 332 31
20 329 338 358 418 477 517
TABLE I.4.11
Sp,A
AL p Ko, p g
Pp =0,19/m? Pp =0,2g/m? Pp =0,5g/m?
48 2. 11 25.18 50,36 125.89
8—12 1.39 16,64 33.28 83.20
12—16 0.83 9.92 19,84 - 49,61
16—20 0.99 11.86 23,72 i 59,31
20—24 0.9 11.28 22.57 96.43
2428 0,78 9.34 18.69 46.72
_m—1 f@)+1 4.08 4,08
D, (2, 8) = i+3tgz & 8> 1Ttgz’

Sk

yiny
(I.4.12)



where

f@ =0+l +3wd=1+4 + 32

{ (I.4.15)

Equation (I.L.10) gives an error in the quantity K(8, n) in the range of
+4% at 1 <m < 1.5 and O < » < 0,25,

This brief review demonstrates the obvious insufficiency of data on the
optical parameters of water droplets in the absorption region. Specifically,
almost no data exist on the scatter indicatrix, The only paper in this respect
is that by K.S.Shifrin (Bibl..i6) who computed the scattering indicatrix with
consideration of absorption, at A = 10u and a = 6,265,

TABLE I.4.12
., o'y a cwtiy
L W' LW ~ ’
g»f Layer am=826 p 3-12.5“( '..ygf' 1..-‘,5’ a= 1235 p

4.0 48.0 14,0 3703.0 ;

4.5 266.8 597.2 16.0 3703.0 S
5.0 250.7 18.0 2921.0 1691.1 | 825.3
5.5 220.8 , 20,0 2258.6 ‘ R
6.0 | 2806.0 | 1345.9 | 22.0 1752.6 |
6.5 | "1872.2 25.0 1363.9 R B
7.0 | 4025 840.8 26.0 1097.4 : :
7.5 381.8 28.0 947.6 g i
8.0 363.4 279.5 30.0 784.3 N ;
8.5 358.8 32.0 662.4 |
9.0 363.4 152.4 | 544.6 34.0 614.1 ;1
9.5 381.8 36.0 593.4 !
10.0 462.3 | 686.7 | 485 38.0 593.4 |
12.0 2323.0 | 1354.3 40.0 549.7

H 42.0 570.4

Another paper (Bibl.8)) gives scattering indicatrices for » # O and a few

values of X and of a, The indicatrices are presented in graphic form, which is
quite inconvenient to use.

Because of the lack of data on absorption in droplets, the absorption co-
efficients of a continuous water layer (Bibl.A,, 47) are often used. Therefore,
it might be of interest to give here the values of the absorption coefficient
for a layer of water, Such data are given in Table I.4.12, taken from McDonald -
(Bibl,4)) and based on measurements by Plyler and Acquista (Bibv1.33). For com-
parison, columns 3 and 4 of the Table give absorption coefficients of droplet
water, computed by the formula

3 K,
Oy = 7 —% |
4 ap, | (I.4.16)
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for a = 6,26p and a = 12,53p at values of K, taken fromTablesI,}.6 and I.A.7,
respectively,

The Table shows that the absorptivity of continuous and droplet water may
differ by a factor of 2, toward either the plus or minus side, ,

It must be noted especially that there are almost no data on the optical |
characteristics of ice. There are only the old computations (for ice spheres)
by Blumer (Bibl.A8) and by Winer (Bibl.49) which are insufficient for the in-
vestigation of radijative transfer in ice clouds, For this reason, in our ‘
subsequent investigation on scattering, we consider only water clouds which, in’
accordance with Fig.I.1l.1l, means a critical temperature of t° = -1¢°, i

In concluding this Section, we will briefly discuss the coefficient C, for
the first term of the scattering function expansion in a series in Legendre
polynomials, We have _

€1 ={1(0) 1 (cosg)sin gap | (L.4.17)
or 0 ‘ : % ‘
C = %Sr(w)cosqwincpdqa. (I.4.18)
Hence ’ :
Cl<3’
‘because of [see eq.(I1.2.7)] "
7 {7 (@) sin gdp = 1.

0

It is also obvious that the coefficient C, is proportional to the resultant
flux or to the difference between the fluxes of radiation scattered into the
front and back hemispheres (with respect to the direction of incidence of the
light). This defines the special role of this coefficient in a number of cases,
as will be shown in the following Chapters,

TABLE I.4.13

-

T e e ===

231
200.0

2.351 2.48] 2.54| 2.4
204.6|227.0|271.6 | 387.7

C,

=1 0.55 2.14
TO0)/1 ()| 2.48

254.8

2.38
109.4

2.56
2424

2.48
2331.3

Table I.4.13 gives the values of C; from (Bibl.40) for n = 1.33 and for
. . y(0) ]
various values of p, The ratios G for the same cases are given in the
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third row of the Table,

Table I.4,13 shows that the value C, varies over a relatively narrow range:
2 £C; 2,6 at 2 <p <30 and that it is not very sensitive to fluctuations in
the elongation of the indicatrix. With an increase in p, the quantity C, first
increases and then varies irregularly, remaining on the whole within the limits
Of 2-3 - 2060 i

TABLE I.4.14
| ] i
¢ l 0.34 l 0.7 l 1.05 ! 1.5 i 1.9
1(0)/1 (7 | 1.9 \ 4.3 ‘ ' 10 l 30 } 70_

The increase in C; with an increase in elongation for moderately elongated
indicatrices is shown in Table I.4.1lk, This Table gives values of C, correspond-
ing to the scattering indicatrices measured by Foyttsik and Chaek in the atmo-
sphere layer near the ground (Bibl.50). -’

It follows from Tables I.4.13 and I.4.1) that, in the case of moderately [46
elongated indicatrices, the quantity C, increases with an increase in p or in
elongation, remaining within the range of 0 -~ 2, Strongly elongated indica-
trices are characterized by minor and irregular fluctuations in the quantity C,
within the range of 2,3 - 2,6,

L.2 Optical Parameters of Real Clouds

The optical properties of real clouds, at present, are very little investi-
gated., Below, we give individual results of computations and measurements.

TABLE I.L.15
a, 23 [ 35 ‘ . 56 \ 6—10 1011 ' 11—15 15—17 17—149 '
|
pl@), % | 2.7 l 3.4 ! 10.1 l 15.4 ‘ 7.4 l 2.7 0.7 1.3 |

The scattering coefficient of a stratus cloud was computed for the visible :
region of the spectrum in another paper (Bibl,18), based on data by Stratton )
and Houghton (Fig.I.L.3) for a drop-size distribution p(a) (in percent for an
interval of the values of a in 1lp) obtained by Neiburger (Bibl.51) and given in
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Table I.4.15.

If n(z) denotes the total number of drops per unit volume at the level z
which, for a given liquid-water content p,(2z),is determined by means of the
i‘ommla
AL

=y » !

s % 9, o%p (o) da
L 2

n(z) =

(I.4.19)

then the number of droplets of a given size per unit volume will be equal to

N 5= _ro0r@

‘/:ﬂ?,, S a3p (a) da (I.L.ZO)

0

Obviously,

o

6o, (2) = noS a*K; (a, \) N (a, 3) ds. (I.h-21)

. From this and taking into account eq.(I.4.20), we obtain
. Pp (3) \ a?Ks(a, A)p(a)da - ° !
o () = ¢ - o« (I.4.22)
o, S ap (a)da
[1]

S8

According to Nelburger's measurements, the gradient of liquid-water content
in the cloud is 0,13 gm/m® per 100 m, from the base of the cloud to the top.

The results of the computations of Gy) based on eq.(I.4.22) for such a
liquid-water content are shown in Table I.L.16.

TABLE I.4.16 /47

E |

. [ | 1

A g 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 2 g ;
S, | 2 ‘ 21 ’ 21 1 21 I 21 l 21 | 2t l 21 | 2
2 ;

Here z is the height in hundreds of meters, counted from the lower boundary of
the cloud upward.

Deirmendjian (Bibl.52) computed the scattering indicatrix and coefficient
on the basis of the drop-size distribution curve given by A.Kh.Khrgian and
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I.P.Mazin [see eq.(I.1.1)] with a droplet concentration equal to 100 per cm®
and a model radius of Lu.

The results of Deirmendjian's computations are presented in Tables I.4.17
a\rld I.l}.lBQ

TABLE I.4.17

A p 0.48

3.0 ‘S.ﬂ 10.08

Sy, ar hm1 16.33\18.58|24.0i 11.18 i

TABLE I.A.18

P
A p
0 10 100 140 180
0.7 [267.4/1.398| 0.00476 [0.03750 | 0.00940-

1
5.3 |7.636]4.282| 0.01069 [0.01074 | 0.00882
10.0 3.704/2.993( 0.00668 [0.00386.| 0.00472 ‘

It can be concluded that the above author (Bibl.52) apparently took the
absorption in the long-wave region of the spectrum into consideration. Obvi-
ously, Deirmendjian computed ¥,, by means of eq.(I.4.22) and determined the
effective scattering indicatrix vy, (¢) from the formula

a? KS (a- A') T (ar A') N(‘)d‘

°2/18

Tox (‘P) = (Iol}o 23)

Owg

K, ‘a,A%N {a)da_

Ye.P.Novoselttsev (Bibl.53), in his calculation of the absorption cross
section in the near-infrared region of the spectrum, used the K.S,Shifrin ap-
proximate formula of the form of

K;:ua’(1~_e—4p1)(1__3), (I.h.zhj

where R is the radiation flux reflected by the droplet
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)
R = Sr((p)sinzipdq), ‘ :
’ ! (Iob—azs)

Here, r(¢) is the Fresnel coefficient which parametrically depends on the com- -
plex refractive index n, ;

Equation (I.h.2L) was obtained from the methods of geometrical optics and |
is constructed as an interpolation formula yielding correct values for small |
and large particles. The same formula was used by K,5.Shifrin in computing D
(see above),

The results of calculating of R in the interval (0.7 < ) < 3,02u) are /48
shown in Table I,4.19.

TABLE T.4.19

A R o R A R

0.700 0.0646 1.50 0.0634 h 2.60 0.0704
0.800 0.0642 1.60 0.0630 2.70 ~ -0.0736
0.900 0.0638 1.70 0.0625 I - 2.74 - 0.0746
1.00- 0.0640 1.80 0.0618 I ~2.77 [ 0.0754
1.05 . 0.0635 1.90 0.0607 0.0764
1.10 0.0632 2,00 0.0603 0.0800
1.20 0.0628 220 0.0620 0.0822
1.30 0.0629 2.40 0.0658 0.0847
1.40 0,0631 2,50 0.0680 '0.0850

With the aid of the Khrgian-Mazin formula [eq.(I.1.1)], Ye.P.Novoselttsev
later derived the following relation which describes the absorption coefficient
per unit volume of a polydisperse cloud ¥, cm®:

~ Po oy o 1 ' |

where p, denotes the water content, in gm/cm®; a is the average droplet radius,
in pg 3‘,) is the absorption coefficient of the continuous water layer, cm™!,

Since Lpu = Zagr,) < 0.1 at X < 2,54, it is possible to assume, in the re-
lation (I.4.24),

f —etox 2 2a,
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and to obtain a simpler expression for Gy, :

(T.4.27)

Computations with this formula in the indicated region of values of A
lead to results close to those computed by means of eq.(I.4.26).

In calculating with eqs,(I.4.26) or (I.4.27), the absorption coefficient
of a continuous water layer &‘l must be known. For A < 2,5u, only the data by |
Aschkinass which are more than 50 years old (see Fig.I.4.7) and a few more
recent individual measurements are available for use,

Table I.4.20 shows that satisfactory agreement exists between the results
of measurements by various authors.

TABLE I.4.20
&y, 2, cmt
A. “ » _ o
t4schkm¢::, 1895 Collins, 923 . Srehic, 1958
0.97 0.416 o™
1.27 1.21 1.28 i f&f‘f:?i
b 38.4 i Ay
* 123.2 103.0 8,

On the basis of Fig.I...7, the values of @, were computed with eq.(I.4.27)
for 22 spectrum regions at p, = 0.2 gm/m°. LS

The values for &, in cm®/gm taken from Fig.I.A.7, as well as the computed
values for @, in km™' and the mass (a,) and volume (a,) absorption coefficients
of water vapor are given in Table I.4.2l. The latter is determined for the
condition of saturation at temperatures of 0 and -15°, Finally, the last column
contains the values of the spectral solar constant for each of the selected
bands, All these data are compiled here since they will be used in Chapter III
in the computation of infrared radiation fluxes. ‘

The spectral regions in Table I.4.2]1 are so selected that they correspond
to the infrared bands of water vapor and to the intervals between the bands.
Each band is subdivided into three segments in accordance with the concept of
the absorption function described in Section 5. The absorption spectrum of ‘
water vapor within the boundaries of the band is characterized by two absorption
coefficients: o the average of all large values and B the average of all small
values,

Assuming a large coefficient o corresponding to the center of the band, /50
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Fig.,I.4.7 Absorption Spectrum of Water
each band can be subdivided into three segments

1 .
7 —7) AL, 7AL, 2 (1 —7) AR,

TABLE I.4.21
- A gy, emt .
o CRTL AR EREL |
t=0° t = —45* P
0.700—0.719 0.006 |0.00017 | 0.019 | 0.0093 | 0.0029 | =

a {0.719—0.721 0.012 | 0,0034 | 0.267 | 0.13 | 0.041 | £.0806 ;
0.721—0.740 0.016 |0.00046 [ 0.019 | 0.0093 | 0.0029 i
0.740—0,790 0.025 |0.00072 | O 0 0 0.0870
0.790—0.814% 0.030 | 0.00086 | 0.020 | 0.0098 | 0,0031

0,8 p {0.814—-0.816 0.030 | 0.00086 | 0.479 | 0.23 0,074 | 0.0760
0.816—0.840 0.031 |{0.00089 | 0.020 | 0.0098 | 0.0031 |
0.840—0.860 0.040 | 0.0011 | O 0 0 0.0277
0.860—0.915 0.069 |0.0020 | 0.038 | 0.019 | 0.0059 |

pot {0.915—0.935 0.147 |0.0042 | 1.153 | 0.36 >} 0.18 0.1511
0.935—0,990 0.400 | 0.011 0.038 | 0819 | 0.0059
0.990—1.030 | 0.352 | 0.010 0 0 10 0.0380
1.030—1.412 0.186 |0.0053 | 0.030 | 0.015 | 0.0046 !

Uy {1.112——1.148 0.583 | 0.017 0.107 | 0.54 {0.42 0.1466
1.148—1.230 1,100 | 0.031 0.030 | 0.015 | 09046
1.230—1,240 . 0.034 0 0 4707 o] 00054
1.240—1.321 0.033 0.047 | 0.023 | 0.0073 | :

v {1.321—1.449 0.36 3.457 | 1.55 0.49.-" } 0.1239
1.449--1,530 1.10 0.047 | 0.023 | 0.0073-] .
1.530—1.755 0.45 0.022 | 0.011 | 0.0034

Q {1.755—1.965 1.37 4478 | 2.05 0,65 0.1036
1.965—2.190 1.6 170.022 | 0.011 | 0.0034
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vwhere A\ is the width of the band and, vy the relative length of the segments
that correspond to the coefficient o, The average absorption coefficient of
water in each of these parts was determined on the basis of the data by Asch-
kinass, The values of o, B, y for the water vapor band in the near-infrared
region are contained in Table I,5.5,

The most important of all experimental investigations on the optical para-
meters of real clouds are the measurements of transparency or the scattering :
coefficient at A < lu. Kampe (Bibl.55) determined the transparency of various |
types of clouds by measuring the attenuation of light of a searchlight installed
on the wing of an aircraft flying in the cloud. He presented the results in |
terms of values of the meteorological visibility range v (MVR), related to the
scattering coefficient by a formula of the form of :

. | (Ioll--%)

The average values obtained by Kampe for clouds of various forms are pre-
sented in Table I.4.22,

TABLE I,}.22
-~ , km—t S km-t
Towe of Closd em % BN sccd. 1o (Bibl. 11) |
Sc 100 39.1 38
st 140 8 26
As 150 26 19.5

Here, T, is computed by means of eq.(I.4.28) for given values of v.
Bullrich (Bibl.11) gives values for G, apparently obtained from the same meas—
urements by Kampe but differing from those computed by eq.(I.4.28), These are
given in the last column of Table I,}.22,

Complex investigations of stratus clouds and fogs in the Arctic were
carried out by G.M.Zabrodskiy, V.G.Morachevskiy and A,L.Dergach (Bibl.10, 56,
57). Specifically, they made detailed investigations on the transparency, with
simul taneous measurements of the water content and the microstructure,

The principal qualitative conclusions from these papers are as follows:

1) Optically, fogs are quite uniform over their entire thickness except
for the upper boundary. ,

2) In the stratocumulus clouds » the transparency decreases rapidly with
height in the lower part of the cloud but remains about constant in its middle
part.
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3) The vertical distribution of transparency in stratus clouds is similar
to that observed in fog but is characterized by greater variability,

L) The transparency rapidly increases in all cases at the upper boundary
of the cloud or fog layer, However, as indicated above, the latest investiga-
tions by G.M.Zabrodskiy (Bibl,7) indicated that the high transparency obtained

at the boundary of the clouds is not real but must be considered an experimentai
error.

5) The behavior of liquid-water content and transparency (or the meteoro- |

logical visibility range) are in good agreement, /51
TABLE T.4.23
Gredation i st Se i
of NVR, o No. of , No. of | o | ¥o. o No. of | .
i Test % ;es: ‘ " ;'es:’ i ¢ Test Yo
: :
2 4 2.9 1 15l — b
2750 1 3.0 2 3.0 — | —
51—100 16 1.5 4 6.1 18 1.4
101—200 93 38.2 22 33.3 78 32,2
201 —300 35 25.2 25 37.9 97 40.2
301—400 12 8.6 7 10,6 16 6.6
£01—500 - S 3.6 4 6.1 12 4.9
500 7 5.0 1 1.5 21 8.7
Totsal | ’ ‘
sceasaresents 139 1%} 66 | 100 252 100 8 100 ;

Quantitative analyses of the correlation between liquid-water content and

visibility, carried out by G.M.Zabrodskiy (Bibl.7) permitted establishing of a
connection between these two quantities:

TP = 34 for clouds Sc,

T (I L J h. 29 )
ope ™ = 42.7 for clouds St;

here v is expressed in meters,

For a St cloud, at p, = 0.2 gn/m® this yields v = 135 m and ¥, = 29 km™!,
The obtained value T, agrees well with the data by Kampe and with the values

of a, (see Table I,},16) computed by us for the z = 150 m level where the water
content, according to Neiburger, is equal to 0.2 gm/m°.

The repetitive values of the meteorclogical visibility range in clouds and

fogs according to data of (Bibl.57) are presented in Table I.4.23. The frequency
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TABLE I..4.24
Recurrence in % by e | fecurrence in % t, .
Greadetion Cloud Form Gredatien:’ Cloud Fora
of NVR, o ‘ . of MVR, &
St % Sc¢  |Ns—As | Fog St Se  [Ns—As Fog
26 0.1 1.0 504 —660 42149120 6.4
2750 2.0 2 5.4 601—3700 2.7102 ] 1.3 1.0
5i—100 | 21,7 10.3 || 701800 | 1.5 1.8.¢2.7 0.5
101—200 | 36.1 32.9 || 801—900 | 0.7 | 1.4°{71.4 t.0
201—300 | 21.4 21,17 901—1000 | 0.1 | 0.7 | 0.7 0.5
301—400 5.6 11.3 1000 — | 0.9 — 1.0
401—500 4.4 6.9

of meteorological visibility range based on a larger volume of experimental
material of the same paper (Bibl.57) is given in Table I..L.24.

6,@;’ a 13.,
" W e
ll-lﬂ-z i L L ! N i
6, b o T e
5-10 m -_—J——-°'__'°’.9J”
U-IO-Z 1 ) i L i
550 600 700 800 900 1000
73q5
n %
30 a
20
10

0
Z 10182634 du

Fig.I.L.8

Spectral Transparency and Microstructure of a Cloud

a - p, = 0,241 gn/m’®, b - p, = 0,146 gm/m®

Ye.I.Bocharov (Bibl.58) made measurements of the spectral attenuation of

radiation of clouds (0.5 < A\ < 1.0p) under high-mountain conditions - on the

slopes of Mt,Elbrus,
cloud was carried out simultaneously.,

The results of the measurements of the

A control check on the microstructure of the investigated

attenuation factor, together with particle-size distribution curves, are plotted

in Figs.Il.4.8 and I.4.9.

The plots indicate that, in accordance with the Mie

theory, the attenuation factor in the region (0.5 - lu) is practically inde-

pendent of the wavelength,

The water content of clouds computed on the basis

of hyperfine structure data, is shown in the same diagrams. Obviously, in a ‘
number of cases there is a lack of correspondence between the low water content '
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and the high attenuation factors, in difference to the above data (shown in
Tables I.4.22 - I.4.24).

Ye.I.Bocharov considers 60 km™! to be the mean value of the attenuation
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Fig.I.4.9 Spectral Transparency and Microstructure of a Cloud
a - py = 0,237 gn/m®, b - p, = 0.286 gm/m®

factor in Se clouds with an average water content of 0.26 gm/m®. Such a value - -
for the water content agrees well with the data presented in Section 1, but the
attenuation factor apparently is too high.

TABLE I.4.25

A e ‘ e

3.6 , 54 .1 8.5 10 # | ns

5 | 067 | o9 | o8 | L
40 | 078 | £:0 | 091 f-o6 | 063 [0 | o5 | 0.6

It is possible that the high values of the attemuation factor obtained
elsewhere (Bibl,58) can be attributed to the large drop sizes of mountain clouds
which appear in Fig;I.h.?-

Ye.I.Bocharov measured also the spectral attenuation of radiation in arti-
ficial fogs (Bibl.59) with a droplet radius from 2.5 to 13w and with a pre-
dominating radius of 3.5 - L.5p. The measurements were made at 13 points /53
within the spectrum of wavelength ranges of 2 -~ 13u, As a result of the in-
vestigations, the author arrived at two conclusions:
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The first conclusion was as follows: The ratio of the attermuation factor |
Dy ,p¢ measured by the optical method to the attenuation factor D, ,,., computed
with data of photomicrography of fog, using the formula :

Dy wicr. = S\ mal K (po) N (@), (I.4.30)
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Fig.X.4.11 Spectral Transparency in Fog

is a constant independent of the wavelength. In eq.(I.4.30) K(p,) is the
effective attenuation cross section computed by Stratton and Houghton for the
true refractive index of n = 1,33 which characterizes the short-wave region of
the spectrum (A < 2u; see Sect,L.,l). Therefore, this conclusion by Ye.I.Bocharov
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can be formulated in the following manner: The attenuation factor in the long-
wave region of the spectrum (2 < X < 13u) depends on the wavelength as it does
in the short-wave region. Apparently, such a conclusion is correct only as to
order of magnitude., Table I,4.25 gives the values K/K, computed with the data
of Johnson-Terrel (for K) and of Stratton-Houghton for K. at n = 1,33 for the
averages of spectral intervals of Table I.L.5(at a = 5p and a = 10u).

Table I.4.25 indicates that the value K/K, for a particle of a given di-
ameter is not at all constant, In the case of a polydisperse fog, considered
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Fig.I.4.12 Spectral Transparency in Fog

by Ye.Il.Bocharov, the ratio K/K; will possibly be less noticeable and the law -
defined by him (Bibl,59) will, in general, not hold, : /5L

Ye.I.Bocharov'!s second conclusion is that, in the attenuation spectrum of
fog, only absorption bands of water vapor but no water bands appear. Thus, his
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Fig.I.4.13 Spectral Transparency in Fog

curves of radiation transfer by a fog layer (curves 1 and 2 in Fig,I.4.10) show_ﬁ
only a band of water vapor with a center of A = 2,7y and no water band with a

center of 2,94u, which is clearly seen in the curve of transmission by a water
layer (Curve 3),

This effect is discussed elsewhere (Bibl.60, 61). It consists in that, in
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the region of resonance absorption bands, the scattering cross section is sharp-
ly attenuated, The reduction in scattering compensates the increase in absorp-
tion, so that the total attenuation cross section undergoes no appreciable

changes,

In addition to the mentioned investigations by Ye,I.Bocharov, several tests
were also made of the transparency of artificial and natural fogs., The princi-
pal results of the work done, beginning with the Forties, are enumerated below. ;
\ Two cases of measuring the transparency of fog by the Elbrus expedition of |
the Academy of Sciences, USSR (Bibl.l17) are given in Fig.I.4.1l. Both cases |
relate to about the same hyperfine structure with average droplet diameters of 8
and 9u, except that the spectral variation in transparency differs sharply ard,
in one case, actually contradicts the theory, The same anomaly (increase in |
transparency with an increase in \) was obtained by Driving (Bibl.62); see ,
Figs,I.L.12 and I.4.13. I.A.Khvostikov (Bibl.17) explained the anomalous trans-
parency observed in a number of cases by the presence of a large number of sub-
microscopic (a < 1lp) droplets, i

Saito (Bibl.63) measured the integral transparency of artificial fog in
the infrared region of the spectrum (2 - LOu). His results in fogs with various
average radii of particles are presented in Figs.I.L.l4. Curves 1 - L repre- :
sent the computation of transparency by means of the formula @
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for a;, = 3, 4, 4.1, L.5, 5.1lu. Here K, is the attenuation cross section of
particles with a radius of a,, whose number per unit volume is equal to ny;

d is the length of the path; and By is Planck's function. The values K, given

in Table I,4.5 were used in the computation. Figure I,/.ll shows that the /55
results of the calculation agree well with the measurements. The transparency
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Fig.,I.4.15 Variations in Transparency of Fog with Time

was relatively weak but increased rapidly with increasing radius, Curve 5 in
Fig.I.L.1lL represents results of the computation of transparency in a continuous
water layer. The substantially lower values of transparency in the case of
curves 1 - ), as compared with curve 5 are due to the increase in the length of
the path of light in the droplet layer due to multiple scattering.

The spectral transparency at 0.3 < A < 13y was measured in a natural fog
(Bibl.6)). An example of the transparency distribution over the spectrum in a
stable fog with a mean droplet radius of 3p is shown in Fig,I..4.15 (each curve

corresponds to a separate measurement). The transparency is nonselective up to.
values of the order of 3u. /57

In natural fog, measurements were also made of the scattering indicatrix
in the visible spectrum region (Bibl.65). The data of these measurements, which
correspond to various values of the meteorological visibility range, are pre-
sented in Figs.I.4.16 and I.L4.17. According to these graphs, the ratio 6 =

Yo = 20°
YCP=120°

for v = 100 m, § = 120), which may indicate a reduction in particle size, The
author (Bibl.b5), however, sees here the manifestation of multiple scattering.
In such a case, the curves plotted in Figs.I.4.16 and I.).17 cannot be considered

decreases with decreasing visibility (for v = 38 m, 6 = 80 and
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as true scattering indicatrices.

The fact that the scattering indicatrix is independent of the wavelength
within the visible spectrum region, as clearly shown in Figs,I.l).16 and I1.4.17
(the circles and triangles indicate experimental data for various wavelengths), .
is of great interest.

: A comparison of three indicatrices is made in Table I.4.26. Here a gives |
the indicatrix shown in Fig.I.4.16 for v = 170 ~ 100 m (according to Tables ;
I.4.23 and I.4.2), a meteorological visibility of the order of 100 - 200 m occurs
most frequently in St, Se¢, Ns-As clouds); b gives the indicatrix calculated by !
Deirmendjian (see Table I.4.18 for A = 0.7u); and c¢ gives the indicatrix corre- |
sponding to the rigorous calculation with the Mie theory for n = 1.33, p = 30
[see (Bibl.37)]. The Table indicates that all three indicatrices agree well

TABLE I.4.26
a b ¢ a L] ¢
1) 7 (100)
T — 2700 2300 T-w—w) — 0.05 0.035
7(10) T (100)
T (100) 400 300 400 Y (140) 0'7. 0.14 0,16

so that each one can be considered a representative (of course, only in general
terms) indicatrix for stratus clouds in the visible region of the spectrum.

The data discussed above makes it possible to judge their suitability for
computations of the spectral optical conditions of clouds. A summary of the
basic information for three regions of the spectrum is given below,

1. Range of visible radiation. There are sufficient data (Bibl,37 - LO)
in existence for computing the scattering indicatrix of a polydisperse cloud,
similar to that given in Table I.4.18. In accordance with the comparison pre-
sented above, the scattering indicatrix calculated on the basis of the Mie
theory for p = 30 (Bibl.37, 40) can also be used, Table I..4.27 gives the co-
?fficieng of expansion of this indicatrix in a series of Legendre polynomials
Bibl.40).

It must, however, be pointed out that computation with an indicatrix of an’

individual particle (see Chapter II, Sect.6) will yield a brightness of re-

flected 1light with several unreal maxima and minima, due to the diffraction
character of the indicatrix,

The scattering coefficient is determined by means of the formila
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If N(a) is prescribed according to Khrgian-Mazin [eq.(I.1.1)] for a,, = 5u and

Eg:-‘ 2“

§°a’ N (a) da.

p = 0.2 X10® gm/em® (see Table I.1.15), we will obtain

According to the experimental data in Table I.4.22, T, which varies in the
range of 25 - 4O km™, corresponds to clouds of the stratus type in the long-

G, = 36 km™1,

(I.L.BZ)

)

wave region of the spectrum, The frequency of the meteorological visibility

TABLE I.4.27
k Cy k Cy k Cy k Cy
0 1.0000 21 8.5914 41 11.6481 61 0.2343
1 2.4808 22 8.8260 42 11,6803 62 0.1374
2 3.7005 23 8.9365 43 11.6180 63 0.0390
3 4.1818 24 9.4373 44 11,3395 | - 64 --0.0380
4 4.6059 25 8.3198 45 11.0574 65 —0.0448
5 5.022¢ 26 93,4504 46 10.3846 66 0.0170
6 5.3963 27 9.6893 47 9.6262 67 0.0030
7 5.8988 28 9.7740 48 8.4612 68 0.0030
8 6.3979 29 10.0078 49 7.3262 69 —0.0055
9 - 6.7932 30 10,1152 .50 5.9052 70 0.0018
410 7.2377 31 10.2799 51 4.5614 71 0.0004
11 7.4772 32 10.4256 52 3.4454 72 0.0000
12 7.7512 33 10,5526 23 2.6292 3 0.0000
13 7.8539 34 10.6629 o4 2.4340 74 0.0000
14 7.9614 35 10,8522 55 2,7312 5 0.0000
15 8.0729 36 10,9022 56 2,7320
16 8.0888 37 11.1601 57 2.7224%
17 8.1954 38 11,2681 o8 2.1933
18 8.2869 39 11.4457 59 1.4118
19 8.3388 40 11,6264 60 1.0595
20 8.5358

range presented in Tables I.,4.23 and 1,4,
basis of eq.(I.4.28), values of G,

Finally, for p, = 0.2 gm/m®

20 << 0, << 39 km™2,

2, makes it possible to obtain, on the '
which vary within the limits of -

we have T, = 30 km™! according to data in
Table I.4.16 and &, = 16 km™* according to data in Table I.4.17. All these
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values agree fairly well and determine the range of variations in the values :
of G, (15 - 140 km™?). Apparently, T, = 30 km™! can be taken as a rough average.
It should be mentioned that, according to Table I.4,22, the scattering coeffi-
cient of Sc clouds differs substantially from the case of St and As clouds.

This difference is apparently quite real since it is manifested in the greater
reflectivity of Sc clouds (see Chapter II, Sect.l). The data of Table I.1.15
and some other material presented in Section 1 of this Chapter make it possible |
to explain the high scattering coefficient of Sc clouds by the particle-distri-|
bution spectrum elongated to the right and also by the larger mean radius and |
the liquid-water content of Sc clouds as compared with St clouds, |

TABLE I.4.28
k Ci k ' Cy ; k l Cy k Cy k Cg
0 1.0000 11 5.1361 21 6.9805 31 7.9652 41 0.4437
1 2.3074% 12 5.3283 22 7.1620 32 7.2868 42 0.5470
2 3.4942 13 5.2985 23 7.4153 33 6.6917 43 0.1645
3 3.8380 14 5.5323 24 7.5386 34 | 5.4769 441 0.7538
4 4.4437 15 5.6562 25 7.8988 35 4.1629 ||' 45 | —0.0310
5 4.6789 16 | 5.8217 26 7.8994 36 3.0580 46 0.0034
6 4.9652 17 6.1148 27 8.3109 37 2.1214 47 0.0013
7 5.0129 18 6,2260 28 8.2279 38 1.6349 48 0.0003
8 5.2174 19 6.5630 29 8.3934 39 1.4217 49 0.0000
9 5.0559 20 6,7061 30 8.1502 40 1.0143 50 | 0.0000
10 5.2371

2, Near-infrared region of the spectrum. In this region, the scattering
coefficient maintains the same value as in the visible region. The scattering
indjcatrix corresponds to 15 < p < 30 for a,, = 5p. Keeping in mind some
shortening of the indicatrix of a real cloud due to the presence of fine drop-
lets, the indicatrix for p = 20 can be used in the computation, The coeffi-
cients of its expansion in a series of Legendre polynomials (Bibl.L0) are pre-
sented in Table I.4.28.

The absorption coefficients of droplet water together with the absorption
coefficient of water vapor are presented in Table I.L.Z21.

3. Region of thermal radiation (A >2.2u). In this region, the computa-
tion for a monodisperse cloud for a,, = 6.26u can be performed by means of
K.S.Shifrints data presented in Tables I.4.6, I.4.10, and I,4.11, On the basis
of Tables I.L.8 and I.4.9, it is also possible to compute the absorption coeffi~

cient of a polydisperse cloud.

The scattering indicatrix for \ > 2,2u is determined by the variation range
in the parameter p.
1<p < 15,

Th




The method of determining the long-wave radiation fluxes, outlined in
Chapter IV, does not require assignment of an indicatrix, Here, it is only
necessary to know the coefficients for the first term of its expansion in a
Legendre polynomial series,

According to Tables I.4.13 and I,4.1k, the coefficient C, changes within
the limits 0.5 - 2.5 for the above indicated changes in p.
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CHAPTER III

/121
ABSORPTION OF SOLAR RADIATION IN CLOUDS

Section 1, Basic Relations

In clouds, absorption of solar radiation takes place in the near-infrared
region of the spectrum (0.7 < A < 2,5u).

The intensity of radiation in this
region is described by an equation of the form (see Chapter I, Sect.3):

ol , , , ! :
cosoFT:“%gl(r, Y7o (r, r'yde’ — I (x, r),
(II1.1.1)
where ~
9 ()= < = =~
av+ aw+ su (III.l.z)
v={ @+ % + 5 dz.
0

(I11.1.3)
If I(r, r) is determined, the fluxes of infrared radiation Fe(r) (i =1, 2) and
the amount of solar energy Q(r) absorbed per unit volume of the cloud can be
computed,

In Chapter I, Sect.2 expressions were given for these quantities:

2n wt/,
Fy(v) = S S I,(x, r) cos bsin 8d8dy, (I11.1.4)
i)
Fa(v) = I, (t, r) cos 8 sin 6dod, : (111.1.5)
o 0
Ay i
Q (9= 18 + %ol { 1n(5.7) dodh; (111.1.6)
o
where A, = 0,754, A = 2,5u, S

Below we give the solution of eq,(III,1.1) for the condition

o(t) = k == const,

(I11.1.7)
which assumes the presence of a relationship between the densities of water
and of water vapor of the form

pu(z) = cpo(2). (111.1.8)
For such a condition, the problem discussed in this Chapter formally in no
way differs from the case of pure scattering investigated in Chapter II.

Never-
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theless, it is difficult to make full use here of the method of solution used

in Chapter II in view of the fact that, in the presence of absorption, the /122

condition of conservation of energy assumes the form

F(0) + Fa (o) = Fa(x) + F2 (0) + { @ (myar, (II1.1.9)
o
where F,(0) and F,(0) are the radiation fluxes arriving at thﬁbboundary of the
cloud; Fy(7,) and F; (7o ) denote the fluxes leaving the cloud; j Q(r)dr is the |
total amount of energy absorbed in the cloud. °
The relation (III.1.9) considered as the equation for determining the
average cosine i (see Chapter II, Sect.}) is too complicated; therefore, another

method of determining the zero approximation of the problem was selected in
this Chapter,

Fig.,II1.1.1 Hemispheres St and S"

The basic principle of solution remains as before, meaning that the solu-
tion proceeds by the method of successive approximation. By the special selec-
tion of the zero approximation method which accounts for the ma jor features of
the examined physical process, it is possible to limit the calculation to a
small number of approximations,

Let the direction of propagation of radiation r be given., We will then
present the spherical integral in eq,(III.1.1) in the form

i

V@) () do = %‘gl (57 (1) do’ 4 A é, [, 7", r)de, (IT1.1.10)

where St denotes the front hemisphere and S™ is the back hemisphere with respect
to the ray r (Fig.III.1.1). We will subject the elongated scattering indica-
trix in the cloud to the following condition:

TE ) =4y —r), L) <E. (I1IT1.1.11)

No special conditions are imposed when / (r, r!') = —— but from eq. (III,1.1)
’ 2

it follows that
82



Vdo' = 4n (1 — 3).
§~7(f,r) ' =4n( vB)' (I11.1.12)

The condition (III.1,11) means that, as a result of the elongation of the
radiation indicatrix, the radiation scattered into the front hemisphere is al-
most all scattered forward, '

The relation (III.1.10) can now be presented in the form of /123
1 . N 1 , L
SV @ )T ) de =l r) + ;,,i,l(r,r)r(r.r)dm.; (III.1.13)

In the investigated case, a small proportion of the energy (B »1 - B) is .
scattered backward; according to Section L in Chapter I, it is possible, for
instance, to assume B = 0,9; therefore, in the zero approximation, we will
assume that

I, r)=1(x, —T) Efor Lrr> 2‘2_

This condition means that, within the limits of the back hemisphere S, the
intensity is isotropic a.nd is equal to the intensity in the direction -r (i.e.,
in a direction opposite to the direction r).

With the above assumptions, eq,(III.1.1) becomes
(e, r) o
Cos) —>2° — __
' =% A=) 7 (N + k(1 —p1 (x, -, (IIL.1.11)

By separating the intensity of the ascending radiation (6 < —%—; 0<y <

< 2n) from the descending radiation (_1.’;— <@ <7y 0 < ¥ < 21) we obtain

co0s 0 ﬂl_.(‘:_L)

=—(A—K) L +k(—p) L, (111.1.15)

12 r
—eos0 T — (4 k) I, k(1 —p) I, (1I1.1.16)

It is not difficult to obtain solutions of eqs.(III.1l.15) - (III.1.16) in
the form of

L) = i o besmin o LEEE e T (111,1.17)
— —14+k :
Lie, )= — it Fersotnn 4o ETIER casmer, (I11.1.18)
where
g=V{@ =k A+ k— 2. (111.1.19)

The constants c; and c, are determined from the boundary conditions., At
the cloud boundary, scattered solar radiation arrives from without, while direct
solar radiation of an intensity of
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I, = nSe~w:5c8 8 (p — ry).

(I11.1.20)
strikes the upper boundary.
Here, 7, is the optical thickness of the layer above the clouds.

Observations made at Leningrad University (Bibl,l) and various computa~
tions (Bibl.2, 3) show that, at { < 75° the scattered radiation fluxes in the |
lower layers of the atmosphere are small compared with the direct radiation I
flux, Therefore, at { < 75° the scattered radiation fluxes can be neglected in
the boundary conditions, keeping in mind the unavoidable error in our problem
due to the approximately given absorption spectrum and to the approximate
method of solution. However, it does not require a special effort to solve the
problem even with consideration of scattered fluxes in the boundary conditions,
if only single scattering is taken into account outside of the cloud., The
necessary solutions are given elsewhere (Bibl..).

Thus, let
1,(0,7) = 0, (111.1.21):
I, (vg, 1) = nSe=s0 0% § (r — 1), (III.1-22)§
At sufficiently large 7o, eqs.(III,1.17) and (IIT.1.18) will yield QQL_
€ = e % (r — ry) ; irﬁ g1 —1% ®) ' (III.1.23).
e = nSesod (r — r) LB Uk 0) 1‘:_”::;, . (I11.1.24)
where k |
% (8) = (T=p )" e-secen., (II1.1.25)

Substituting the obtained values ¢y and e, in eqs,(III.1.17) and (III.1.18) we
will find

I (t r)=“_‘g_e;wcolb(r_r)i-k—_g ~g3ech(t—7) .
1t T— o (0) o yoT—gle ) — egmeohinie) I (111.1.26)
_ uSe-secOr, . {1 —k — ‘ f

I, (v, r) = T—a é(r — ry) [egsectzes) k—'_—i—j:-e—Mf.—‘l)]'i (III.1.27)

The latter expressions are considered as the zero approximation to the solution
of the problem, ‘

Let us return now to the exact equation (III.1.1). By separating the in-
tensity of ascending radiation I, from the descending radiation I, we obtain
expressions for both quantities in integral form, taking conditions (III.1.21)
and (III,1.22) into consideration,

8L



1P (x, 1) = sec 9 & e AT

0 .

1Y (a,

(I11.1.28)

Bl

1) = ASeND (r — ro) et 4 sec (et , (s, 1) i, (111.1.29)

where K, (1, r) and K, (71, r) are determined from the relations (I.2.35) and

| (1.2.36).

After substituting into the right-hand sides of egs,(III.1.28) and
(II1.1.29), the zero approximations of intensity (III.1.26) and (I11.1.27), we

find
kS e—sectty {1 —k—r e—83eCU(TomT)__ ,8ectT ~gsecT,
Il("v’)’“T“‘mSﬁGﬂ F—1—rTn (ry re)| - secO - gsecl
| e Becl(Tytt) __ —secht —gseclT, [ e—gsec(te—T) __ —8echT —gsectT,
1 - sece__gsecc ]‘*‘1’1.2("."@) Sece_}_gsecc

e—8secl(zett) __ e-sece-re—gseczt, ( 1—k—¢g )2}
- sec —gsecl k—1—¢g !

;

e-sect-r :

(111.,1.30)

o kS 1
Ig(f.')=7ml‘@se°9{'l’z.x(’,"®) iy Z56cf —s0c®

e~BBeCT(TytT) __ ,~5e0B(Te~T) ,—2g sec LT, ]
- +
secO { gsec

~secO(ty~1) __ —gsech(Ty—1)
€ e
+T?.,2(r’ r@) gsecg_.secﬂ -

(4 —f — g)z —8secl(Tytt) __ ,—8eCH(Ty-1) ~2gsecT, ]
- =1, sec B+ gsecl

+ nSeec%7: 4 (r — 1) e~ ),

In accordance with egs.(III.1.30) and (III.1.31), the expression for the

—k—g [e—secﬂ(t.—r) — e gmect(T,-T) «

¥

e memead

(I11.1.31)

125

intensity of radiation emerging from the boundaries of the cloud is presented

in the following form:

k

kS e%eclTy —g
T—g T1a (" 70) X

Il (Tm r) = Tmﬁsece {,i‘:

[ 1 e—288ect T,
secﬁ—{-gsecg - secﬂ_gsecg ] +Tl.’('¢ r@) X

x[ 1 _(i——k——g)’ e~2g3ects, '
sec O | gsecl k—1—yg sec® —gsecy ]}’

1,(0, r) = kS e7so% [ 1
2 (0, 1) A 1—q>1(§)s°°9 sec0_gecl —
1—k

1 —
- WJ + {m?g'l’z.l (ry ro) + 114 (r, r@jl e-gmect, |
These relations and Table IIT,2.1 show that everywhere in the

(IT1.1.32)

(111.1.33)

near-infrared

region of the spectrum, except in the centers of the broad bands ¥ and 0, the

85



clouds differ from semi-infinite,

TABLE III.2,1

t=0° t= —15°
Arg, p

k g T k g L n8;

0.700—0.719 | 0.993684 0.0080 | 0.021 0.999901 { 0.0044 | 0.0057 §
0.719—-0.721 0.995649 0.030- {0,029 0.998611 0.017 0.080 }0.081
0.721—0.740 | 0.999674 0.0080 | 0.021 0.99983% | 0.0048 | 0.0057
0.740—0.790 | 0.999976 0.0022 0 0.999976 | 0.0022 | O 0.087
0.790—0.814 | 0.999645 0.0084 | 0.022 0.999868 | 0.0051 |.0.0060
0.814—0.816 0.992209 0.040 0.053 0.997502 0.022 0.14 0.076
0.816—0.840 0.999644 0.0084% 0.022 0.999867 0.0052 | 0.0060
0.840—0.860 0.999962 0.0028 | O 0.999961 0.0028 | 0 0.028
0.860—0.915 | 0.999314 0.012 0.042 0.999737 0.0072 | 0.011
0.915—0.935 | -0.981380 0.063 1.27 0.993940 0.035 0.34 0.15
0.935—0.990 0.998990 0.014 0.042 0.999422 0.011 0.011
0.990—1,030 | 0.999664 0.0082 0 0.999664 | 0.0082 & 0 0.038
1.030—1.112 0.999333 0.012 0.033 0.999667 0.0082 | 0.0090

A12—1.1448 | 0.981700 | 0.062 |- 1.22 0.993763 | 0.036 0.33 0.15
.148—1.230 | 0.998464 | 0,048 0.033 0.998797 0.016 0.0090 .
.230—1.240 | 0,998852 0.015 0 0.998851 0.015 | 0 0.0054
.240—1.321 | 0.998124 0.019 0.052 0.998647 0.016 0.014
L321—1.449 | 0.940141 0.12 3.47 0.972368 | 0,078 0.95 0.12

.449—1.530 0.963792 0.091 0.052 0.964281 0.090 0.014

930—1.755 0.984811 0.057 0.024 0.985049 0.056 0.0066
.755—1.965 0.897819 017 4.60 0.937069 0.12 1.25 0,10
.965—2.190 0.962316 0.093 0.024 0.962543 0.093 10.0066

o el el e el i b e

After computing the intensity, it is possible to determine from egs.
(II1.1.4) - (II1.1.6) the radiation fluxes and amount of solar energy absorbed
at different levels in the clouds, The results of the calculations are given
below. Here, we only note that a comparison of the computations made by means
of eqs.(III.1.4) - (III.1.5) and (ITI,1.32) - (III.1.33) with the exact compu-
tations by L.M.Romanova (see Chapter II, Sect,1) showed that the above approxi-
mate method permits to determine the fluxes of reflected radiation and of radi-
ation transmitted by the cloud, with an error of the order of 5 - 103, However,
this method results in excessive errors in the degree of intensity, for which
reason we did not use it in the computation of these quantities., In determining
the intensity, it is apparently necessary to carry out a few more successive /126
approximations, which must be done by calculation, Analytical expressions can
be obtained only in zero and in first approximation.

Section 2, Spectral Fluxes of Infrared Radiation

We used the relations (III.1.4) - (III.1.6) and (III.1.32) - (III.1.33) in
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computing radiation fluxes in the 22 spectral intervals shown in Table I,/.21.
All absorption bands of water vapor in the near-infrared region of the spectrum
and the intervals between them were considered. The computations were made for
thin (H = 0.25 km) and thick (H = 1 km) clouds, with the upper boundary at the
level z; = 2 km, at a mean cloud temperature of (°C, and an average liquid-
water content of 0.2 gm/ma.

So-called "high™ clouds (as distinguished from Mow" clouds indicated
above) located in the layer (L =2 <5 km) with a temperature of -15° and a
water content of 0.2 gm/m” were also considered.

The moisture content was determined as a function of the temperature. The
density of water vapor in the saturation state at the above temperatures was
equal to 4.9 gm/m° for a low cloud and 1,55 gm/m® for a high cloud. The dis-
tribution of moisture with height above the cloud is described by the formula

Pu (2) = py (23) 0% (=20 (111.2.1)

where p,(2g) = 4.9 gm/m® or 1.55 gm/m®, From this, we determined the optical
thickness of the layer above the clouds T, in the spectrum interval M\,:

Tei = %.i& Pw(2)dz = ay i my, (111.2.2)

2s

where m, is the water-vapor content in the layer above the clouds which, for
the condition (III.2.1), is equal to 1.1 gm/cm® for a low cloud and 0.3 gm/cm® .
for a high cloud,

In accordance with the differing moisture content, a low and high cloud
differ in their absorptivity. In the computations, the values @,, from colum 5
of Table I.L.21 were used in the first case and the values from column 6 in the
second case, The absorption coefficient of water '5,', was taken from column 3
of the same Table and, finally, the scattering coefficient o, was taken as
equal to 30 km™* in accordance with the data of Chapter I, Sect,4. According
to Table I,4.22, this value of o, refers to St and As clouds and slightly under-
estimates the scattering coefficient of Sc clouds.,

Later, we used the scattering indicatrix of a droplet at p = 20, Some
Justification for the selection of this indicatrix and the numerical values of
the coefficient of its expansion in a series of Legendre polynomial are given
in Chapter I, Sect.k,

The numerical values for the parameters of eqs,(TII.1.32) - (III.1.33),
which correspond to the selected values of the physical parameters, are given
in Table II1.2.1., For convenience, the quantities A\, and ©S, are repeated
here, s

Tables III.2,2 and III.2,3 give the results of calculations of the spectral
radiation fluxes, those reflected by the cloud F,;(7,) and those transmitted
by it Fa,(0), together with the albedo A, and the relative transmission P,.
The last two quantities for a separate spectral interval are computed by
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Fl,i (to) -

-4i = —secyzT, 4 ? l
a8, cosLe Sai’ (111.2.3)

F, (0
Pi= z'tSi €os ge_‘““‘" ) (III.2.Z&).

‘The albedo and transmission of an entire band are determined from the rela- [127
tions

3 i
F, (%) ;
4= % "‘ (I1I1.2.5)
cos { I xS, 0
t=1
3
> Fui(0)
Pj=—_=1 . (I11.2.6)
cos { mS'ie-sch?'i
=1
TABLE I1T1.2.2
Low Clouds High
Band AL, Clouds
Fi(t)eal/cal ain Fe(Dcal/cal ain| A. % P, % A, %
! 0.700—0.719 0.022 0.0069 66 21 66
e 0.719—0.724 0.0011 0.00030 59 16 63
{ 0.721—0.740 0.022 0.0069 66 21 66
0,740—0.790 0.045 0.014 65 22 65
0.790--0.814 0.020 0.0065 66 21 66
084 p {0.814—0.816 0.00073 0.0318 93 13 62
0,816—0.840 0.020 0.0065 66 21 66
0,840—0,860 0.016 0.0052 66 22 66
{ 0.860—0.915 0.035 0.011 65 20 65
pot 0,915—-0.935 0,0024 0.0338 45 8 57
0.935—0,990 0.034 0.011 65 20 66
0.990—1.030 0.022 0.0269 66 21 66
1.030—4.112 0.033 0.010 66 21 66
@ { 1.112—-1.148 0,0025 0.0348 46 9 57
1.148—1.230 0.032 0.0295 62 19 63
1.230—1.240 0.0030 0.0392 64 20
1.240-—1.324 0.018 0.0252 62 18 63
4 { 1.321—1.449 0.00021 0.0411 25 1 40-
1.449—1.530 0.010 0.02114 37 4 37
{ 4.530—1.755 0.014 0.0030 46 10 48
Q { 1.755—1.965 0.0425 0.0636 i8 0.25 24
| 1.965—2.190 0.010 0.0396 3% 3 34




Here the summation is made along three spectral intervals which compose the
band, With the same formulas, the integral albedo and transmission can be
computed if the summation is extended to the entire infrared region.,

Table III.2.2 presents all 22 spectral intervals for the case of T = 30,
¢ = 30°, These data are given here to demonstrate the changes in the optical
properties of a cloud within the boundaries of an individual band and for
clarifying the difference between the center and the fringes of the band.

Since the division of the band on the basis of the scheme by Ye.S.Kuznetsow
(see Chapter I, Sect.5) is quite arbitrary and does not correspond to the true

TABLE I1I.2,3

=% g =60°
Bend Fy, F,, . Fi. F.,
cal/cal-nin] cal/ca? ain _A. NP cal/ca’-min | cal-ca’ min A% P.%
Low Cloud, T19y=26
a 0.022 0.042 33 | 63 0.020 0.019 50 48
0.024 0.038 32 | 61 0.024 0.019 53 42
08 p 0.02¢ | 0.039 33 | 62 0.019 0.018 50 | 48
’ 0.0078 0.014 32 | 58 0.0073 0.0070 50 48
pov 0.036 0.062 33 | 36 0.034 0.017 54 | 28
0.011 0.020 33 | 61 0.010 0.0095 50 47
o 0,034 0.059 32 | 56 0.030 0.029 50 48
0.0015 0.0026 32 | 55 0.0014 0.0014 49 47
4 0.014 0.029 24 | 350 0.014 0.013 42 40
Q 0.014 0.022 24 | 37 0.013 0.012 37 36
3z 0.1853 0.328 31 55 0.173 0.145 50 42
High Cloud, 79 = 30

a 0.044 0.014 67 | 21 0.030 0.0057 78 15
0.045 0.014 65 | 19 0.033 0.0044 76 10
08 p 0.042 0.013 65 | 21 0.027 0.0053 77 15
0.016 0.0052 67 | 22 0.009 0.0020 78 14
p3%¥ 0.074 0,022 64 | 20 0.045 0.0083 75 14
0.022 0.0069 67 | 21 0.014 0.0029 76 15
o 0.067 0.020 64 | 19 0.044 0.0075 5 13
0.0030 0.00092 64 20 0.002 0,00034 2 12
A 4 0.028 0.0063 48 11 0.017 0.,0020 55 6
Q 0.024 0.0040 4 7 0.015 0,000786 | 45 2
z 0.362 0.1063 6 | 18 0.23 0.0392 7 12

distribution of the lines in the band, we found it necessary to give detailed
values for all computational data,

tion characterizing individual bands,

contain the integral values F,, (1,), Fo(0), A and P for the entire infrared /128
region of the spectrum,

Table III1.2,3 therefore gives only informa-
The last rows of each part of the Table
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In studying Tables IIT.Z2,2 and III,2,3 the following conclusions can be
drawn:

1. With an increase in absorption the reflectivity of the clouds is re-
duced, In the broad band (), the albedo is only 60 - 70% of that of the weakest
band a, For k,y, = 0,8978 (N = 21), we have A = 18%, and for K,,, = 0.999976
(N = 4), we have A = 65%, Simultaneously, the transmission is also noticeably
decreased,

2. Because of the near-infrared region, the total albedo of the cloud §
with respect to the total solar radiation is reduced relative to the visible
region of the spectrum.

If the total albedo A is computed by means of the equation

ns, + as; r. *

where A, andwxS, are the albedo and the solar constant in the visible region of
the spectrum, respectively; A, andnS;, are the same for the infrared region,
then we obtain, in the case of v, = 30, the following

A4, =176%, A =67% when  — 30c
A, =81%, A=T7%% e L =60

3. In the infrared region, the albedo increases with increasing optical [1g2
thickness of the cloud and of zenith distance of the sun. This proceeds more
rapidly than in the visible spectrum region.

L. The albedo of a high cloud is somewhat greater than that of a lower
cloud because of a lesser absorption of water vapor in the former case; the
difference in albedo is particularly noticeable in the centers of the absorp~
tion bands.

5¢ A thin cloud transmits more radiation than it reflects. However, a
relatively small thickness (v = 6) is sufficient for the reflected radiation
to be greater than the transmitted radiation, beginning at some solar zenith
distance (L = 60°),

In conclusion, we can state that at present no experimental data are
available with which to compare the computations made on the spectral radiation
fluxes in the infrared region of the spectrum, emitted from the cloud layer.

In discussing various theoretical papers, reference is made first to the
bibliography at the end of Chapter II [see (Bibl.2-7, 16, 18, 22)] since, at
o(t) = const = k < 1, eq.(III.1.1) does not differ in form from eq.(III.2.3)
which describes the radiative transfer from the visible region. To this list
should be added the paper by Fritz (Bibl.5) in which the case k < 1 is con-
sidered on the basis of the method of diffusion approximation, described in
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Chapter II. In order of magnitude, our values agree with those by Fritz; more
exact comparisons are of no use since no error evaluation was made by this
author (Bibl.5). The same is true of other papers (Bibl.2 - 7) listed in Chap-
ter II. Therefore, a comparison can be made only with the results of L.M.
Romanova [see (Bibl.16) in the bibliography at the end of Chapter II] by means
of which the accuracy of our computations could be checked, as shown in Sec-
tion 1.

Section 3. Total Quantity of Energy Absorbed in a Cloud; Comparison f
with Calculations by other Authors and with Experiments

If the intensity of radiation I, (T, r) is known, eqs.(III.1.6) will permit
computation of the absorption per unit volume Q(t) and of the total amount of |
radiant energy Q absorbed by a given cloud. The quantity Q can also be calcu~-
lated from the relation

Q = Fy(0) + Fa(wo) — Fy(vo)—F2(0), | (I11.3.1)

where F; (0) and F»(7,) are the integral radiation fluxes of incoming radiation |
at the upper and lower boundaries of the cloud, respectively; F,(t,) and F,(0)
are the fluxes leaving the boundary. ;

The method and the results of calculating the quantity Q by means of
eq.(III.3.1) are given in a paper by Korb, Michalowsky, and Moller (Bibl.6).
The authors made use of the two-flux approximation (see Chapter II) and im-
proved it further. It is assumed that in the depths of the cloud layer where
the flux of direct solar radiation becomes zero, it is possible to use, in de-
scribing the flux of purely scattered or diffused radiation, the so-called
Mecke equation

= — kaF,—F (1 —y)a(F, — Fy),
(111.3.2)
Ut yaFy — (1 — ) a (Fy— Fy),

where a is the coefficient of extinction; X is the component of absorbed light;

Bt is the component of back-scattered radiation or the reflection factor. ;
In discussing any of the levels inside the cloud, up to the upper boundary;

the authors replaced B in eq.(III1.3.2) by a variable quantity of the type of /130

B(Z) 23,—(8"‘3);—:6“’" (III‘B'B)
where F, and B are, respectively, the flux and reflection factor of direct in-
solation. Naturally, the reflection of a parallel beam is different from the
reflection of diffuse radiation. It is, however, difficult to say to what ex-
tent the solution of the problem is made more precise by accounting for the
variability in the reflection factor in the form of eq.(III.3.3), if only be-
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cause of the rough determination of the value B used by the author. In addi-
tion, it must be kept in mind that also in the depth of a strongly scattering
medium, the intensity of scattered radiation is anisotropic in the presence of
absorption. For this reason, eq.(III.3.1) is not completely exact.

The second improvement of the two-flux approximation made by Korb (Bibl.6)
consists in the introduction of a so-called M™inversion factor", i.e., of a i

s Y0 E
10— |
8 N ?
61— ~ - |
U 3 I — \ ‘
5 g
0

20 4o 60 C°

Fig.IITl.3.1 Relative Absorption According to
Data by Korb

i

variable factor for the absorption coefficient, which is to account for the
elongatlon of the path of light in the cloud due to scattering and for the d1f-1
ference in absorption by droplet water and by a continuous layer. ,

TABIE III.3.1l

L Water | v 7 Weter | -
c Water-VYapor | Droplet C ater- “P" Droplet
ase Content, ca l C::/(:gt Radus, “' ase Content, ca | C::/t:;‘ | l.dn'll.p‘
f i
1 1.1 0.5 0.8 0.3 5 i
2 1.02 0.3 0.65 0.3 6 i

Korb et al (Bibl.6) just as Fritz (Bibl.5) give no evaluation of the accu-
racy of their solutions. The only criterion for reliability of the results in |
both cases is the fact that they do not contradict the small amount of available
observational data. Thus, the computations by Korb et al (Bibl.6) agree better
with the results obtained by Neiburger (Bibl.7) than the latter's own computa-
tions made on the basis of the solution of eq.(III.3.2) without correction. In
view of the small amount of observational data and of the lack of information
on the values of the basic parameters of the problem at the instant of measure-
ment, such a method of checking the theory cannot be considered reliable. The
relative absorptlon (in %) accordlng to data by Korb, for four cases described
in Table III.3.1, is plotted in Fig.III.3.1.

The few data on infrared radiation Q absorbed by clouds are compiled else-
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where (Bibl.7 - 9). Common to the data presented in these papers is the low

accuracy of the experimental determination of the quantity Q. By nature, this
quantity is small and with the present experimental methodology is obtained as
the difference between nearly equal large values, namely, the radiation fluxes
entering and leaving the cloud. According to Neiburger (Bibl.7), the average
value of Q for St clouds amounts to 7% of the short-wave radiation arriving at
the cloud while the scattering of the data already exceeds this value. The data
by N.I.Chel'tsov (Bibl.8) reveal some relationship between absorption and thlck-
ness of the cloud. |

At an average thickness of 360 m for 26 cases, the value of Q was found to
be equal to 3.5 + 0.2%; in another group of measurements with an average thick-
ness of 530 m, Q was equal to 7.2 + 1.8%. The averaging here was made for /131
clouds of various types with an upper boundary of 3 km.

Data of absorption measurements in very thick clouds (of the order of
6 - 8 km), mostly multi-layer cloud systems with an upper boundary at the

7 - 8 km level, were given by Fritz (Bibl.9). Here, the amount of absorbed
radiation constltuted about 15 + 5% (in one case 27 + 3%).

TABLE IIT.3.2

Low Closd "gﬂ- Low Clend :m‘
Bend -——-——«—r—«»"——:—. ] I Bend T4 = M°
Te = 6, I T e = M, Ty == 6, - 1 1.:3‘.
L VRS T L=ar t=3] t—op| T
a 0.003 0008 T 0o.023] o oo U 0.013 o.M8 000651 0.020
0o.mM3 00 Lo msa; o 0] 0.0 | 0 00078 0.00036] 0_.00078
08 p 0,003 0000 | o007 o o A 4 0.5 0.0237 1 0.012 0.0
00022 | 000K 0.3 | 01129 Q 0,023 0.031 | 0.M8 0.038
p3T 0.2 0017 1 600671 0 019 Iz N ORG8 | O 1304 | 00607 | 0444
0,002 w.o0%t] oozt ooy :

We also computed the total amount of absorbed radiation in a cloud on the
basis of eq.(III.3.1). The computation error was 20%.

Examples of absolute absorption (in eal/cm®* min) of infrared solar radia-
tion in individual bands, showing the difference in the absorption properties
of thin and thick, low and high clouds and also the reduction in absorption ‘
with increase in the zenith distance of the sun are given in Table III.3.2. At
first, the latter appears improbable because of the fact that, with an in-
crease in {, the effective thickness of the cloud increases and the radiation
path within this thickness lengthens, as a result of which the albedo, for in-
stance, also will increase. However, precisely because of the growth in albedo,
the absorptivity of the cloud will decrease.

We will demonstrate later that, as shown in Table III.3.2, a high cloud
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absorbs more energy than a low cloud. Therefore, the absorption in the first
case takes place mainly in the broad bands Y and Q. In these segments of the
spectrum a smaller amount of solar energy arrives at the lower cloud and the
role of the weak bands in absorption is increased. The difference in the ab-
sorption properties of a ™high"™ and a "low™ cloud is partly compensated by the
lower temperature of the former and a correspondingly smaller absorption coeffi-
cient of water vapor.

The relative integral absorption of infrared radiation q (in %) is pre-
sented in Table III.3.3. The quantity q was computed by means of the formula

¢
i
i

I0,

e . (111.3.hi

'I(SH(I'N“""’ L XNaSie ("2."(‘1)._6{

Here, the denominator is the total amount of solar radiation incident on the :
upper boundary of the cloud. The first addend in the denominator refers to the
visible region of the spectrum; in its determination, it was assumed that

3 (0)

T tHe = T
where T = 0.3 is the total optical thlckness of the atmosphere in the range of
wavelengths of visible light; o(0) = 0.1 km ' is the scattering coefficient in |
the layer near the ground; z; is the height of the upper boundary of the cloud. |

/132
TABLE ITI.3.3

Cloud Position < g a
6 30 6.2
60 2.5
Low
30 9.5
% 60 8.1
High 30 30 8.9

It is interesting to note that the laws of variation in relative q and in
absolute Q of absorption differ. The reasons involved need no further explana-
tion. J

Section 4. Absorption of Solar Radiation in a Cloudy Atmosphere

The appearance of a cloud leads to a change in the amount of absorbed solar
energy at all levels of the atmosphere. It is not difficult to predict the
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nature of this change: The absorption above the cloud is greater than in a

cloudless sky because of the reflection of radiation from the cloud; conversely,
in the layer below the cloud, absorption must increase since a smaller portion
of the infrared radiation wlll reach this layer. |

The distribution of the quantity Q (v) [see eq.(III.1.6)] with height in a
cloudy atmosphere is given in another paper (Bibl.10). Here, in the layers :
outside of the clouds, absorption in the water-vapor band and scattering on air
molecules and on aerosol particles were taken into consideration; absorption by
the water layer in the cloud, scattering by water droplets, and absorption by |
water vapor were also considered; on the interfaces between clouds and ambient
medium, equality of radiation fluxes was assumed. It was also stipulated that
the intensity of radiation leaving the cloud does not depend on the direction.
A solution is given, taking into account only 31ngle scattering outside of
cloud. In the cloud layer itself, the solution in the zero approximation is
used (see Sect.l).

The obtained relations are not given here since they present nothing new
compared to Section l. We will confine the discussion here to the results of
computations performed with the following values of the parameters: ( = 60°,
H=1km, 2, =1 km; 2, =2 km, where 2z, and z, are levels of the lower and
upper boundaries of the clouds

pg»= 0.5g¢/m% p® =5 g/m% pi(z) = p(0) s (i=1, 2);

The numerals 0, 1, and 2 refer to the layers below, within, and above the cloud,
respectively. The quantity o’ (0) was so selected that the density of water
vapor on the boundaries of the cloud varies continuously.

The scattering nropertles of a cloud were characterized by the scattering
coefficients cv =25 km ! and by two values of the parameter B (see Sect.l)
B = 0.6 and 8 = 0.9.

The same spectral intervals as in Section 1 were examined; here, the values
of the absorption coefficients of water vapor o, and the values of the absorp-
tion coefficient of a water layer &, given in Table I.4.21 were used.

The results of the computations are presented in Tables III.4.l - III.4.3 .
and in Fig.III.4.1. /133

The absorption Q (in 107°® cal/cn’ *min) on three levels in the cloud layers .
is given: in Table III.L.1l for the layer below the cloud; in Table III.4.2 for
the layer within the cloud; and in Table III.4.3 for the layer above the cloud.
The solid heavy curves in Fig.III.4.l show the distribution of Q with height,
Q(z), in a cloudless atmosphere according to the data from another paper
(Bibl.11). The solid thin curves refer to a cloudy atmosphere with B = 0.6,
while the broken curves indicate the case of 8 = 0.9.

A study of these diagrams and Tables shows the following regularities:
1. The absorption at the boundaries shows a discontinuity due to a dis-

95



continuity in the density of water and in the absorption coefficient.

2. The absorption in the layer below the cloud is sharply reduced compared
with the absorption at corresponding heights in a cloudless atmosphere. Thus,
¢, cal/cw3emin . |
, . 0310°F c
0, cal/cm’“min
0316°

L}

v

YN

ari’t

z,km

z, hm

Fig.ITI.4.1 Distribution of Absorbed Energy with Height
a - In the band a; b -~ In the band O.8u; ¢ - In the band ¥;
d - In the band ¥; e - Composite curve

at the same water-vapor content in the entire thickness of the atmosphere, the

data by Ye.S.Kuznetsov (Bibl.11) yield Q(0) = 0.1 x 10°° cal/em’- min. Our /134

computations (Table IIT.4.1) give Q' §o) = 0.0029 x 10°® cal/cm® °min for B |

= 0.6 and Q'*’(0) = 0.01 x 10°° cal/cn® *min for B = 0.9. Here, Q(0) and Q'*’(0)

are the amount of absorbed radiation near the surface of the earth in cloud- /135

less and cloudy skies, respectively. e '
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TABIE III.4.1

B=10.6 I B=109
. z, km
Band :
T 0 0.5 1.0 0 0.5 1.0
a 0.0%97 0.0%85 0.0%72 0.0%15 0.0%13 0,081
08 p 0.0%42 0.0%37 0.0%32 0.0%47 0,0%5 | 0.0%3
pst 0.0%96 0.0%85 0.0%75 0.0%236 0.0%33 0.0%31
L) 0.0%43 0.0%41 0.0339 0.0%29 0.0%28 0.0%227
y 0.0%92 0.0%80 0.0%67 0.0342 |, 0.0*10 0.0%88
Q 0.0%32 0.0827 0.0%22 0.0%33 0.0%28 0.0%23
0.70—2.19 p| 0.0229 0.0225 0.0222 0.011 0.0104 0.0%92
TABIE I1I.L.2
8=0,6 N 8=0,9
z, km
Hoaoca
i 1.5 2 1 1.5 2
e 0,0%92 0.0%19 0.320 - 0.0%4 0.0%84 | 0.017
0.72—0.79 0.074 0.0%15 0.0%225 0.0%8 0.0%10 0.0%19
08 p 0.0%36 0.0°719 0.020 0.0%16 0.0%96_ | .0.019
0.84—086 u| 0,094 0.0%8 0.0%0 0.0285 0.0%49 | 0.0%95
pot 0.0%12 0.027 0.095 0.0%54 0.034 0.079
0.99—1.03p| 0.03%25 0.0%3 0.013 0.0210 0.0%61 0.042
@ 0.0215 0.043 0.20 0.011 0.073 0.18
1.23—1.24p| 0.0972 0.0%17 0.0%61 0.0%41 0.0225 0.0%5
¥ 0.0%61 0.025 0.29 0.0287 0.069 0.26
Q 0.0%28 0.0%54 1.38 0.0222 0.065 1.13
0.70—2.19p| 0.0%52 0.13 2.05 0.032 0,27 1.78
TABIE IT1I1.4.3
B =06 || B=0)9
" Band z, km
2 3 5 2 3 5
. a 0.026 0.018 0.082 0.045 0.010 | 0.049
08 p 0.47 0.042 0.059 0.016 0.014 | 0.056
pot 0.054 0.042 0.029 0.049 0.038 | 0,028
o 0.046 0.037 0.028 0.043 0,035 | 0,027
L 4 0.026 0.020 0.028 0.024 0.018 | 0.027
Q 0.011 10.084 0.010 0.0%99 0.0%72 | 0,010
0.70—2.19 p 0.18 0.138 0.11 0.15 -0.12 0.0
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3. Directly above the clouds, the absorption increases more than two-fold
compared with the cloudless case.

L. The more elongated indicatrix (B = C.9) gives a lower absorption above
the cloud also in its upper portion (sometimes almost to the lowest boundary of
the cloud); over the greater part of the cloud (as a rule) and below it, ab-
sorption is greater at B = 0.9 than at B = 0.6.

5. The absorption within a cloud assumes the greatest value in its upper |
layer. The broader the band under consideration the narrower will be the layera
at whose boundary the absorption is concentrated. |

TABLE II1.4..4
1
Below the Cloud| Wi thin theCload| dbove the Clond Upper Layer, 1
0zt km CICICTIm 225 om £>50m
B =06 0.0003 0.039 0.041
B =09 0.001 0.060 0.035 0.061
ReateL. 61 0.001 0,053 0,087

Composite data (total absorbed energy in an individual layer) are given in
Table III.Z},.Z}‘ :

The last row in Table III.4.4 presents the data by Korb et al (Bibl.6) for

a cloud of 1 km th*ckness, with an upper boundary at a height of 2 km for ( =
= 60° and py = 0.3 gm/m + The Table shows agreement of our data with the calcu~
lations by Korb. ;

Here, we used the absorption data for z > 5 km from the computation by
Ye.S.Kuznetsov (Bibl.11l), which are valid for the case of a cloudless atmos-
sphere. As shown in Fig.III.L4.l, the absorption at heights of z > 5 km in a
cloudless and cloudy atmosphere are nearly equal.

The most interesting conclusion from Table III.4., is that the total
amount of absorbed energy in a cloudy atmosphere is 0.155 cal/en *min, i.e.,
55¢ more than in a cloudless atmosphere whereas, according to Ye.S.Kuznetsov's
computation, C.1 cal/en *min is absorbed at the same water-vapor content.

The absorbed energy is distributed by layers in the following manner:
Below the clouds, about as much is absorbted as in the entire cloudless atmo-
sphere; furthermore, 55% of this amount is absorbed by the cloud. The absorp-
tion in the layer below the cloud can be considered roughly to be equal to
Zero.
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CHAPTER IV /137
SPECTRAL FLUXES OF LONG-WAVE RADIATTON

Section 1. Approximation Formulas for the Fluxes

In the long-wave region of the spectrum, the equations of transfer of E
ascending and descending radiation in a cloud can be written in the following
form [see eg.(I.3.23)]:

cosﬂah (A —KB (x) + Z”_“. Sh (t, 7') yu(r, r') do’ 7*'.,} ;

+'4—,'k“‘SII (v, ¥') Yo (ry 7)Y doo’ — I, (7, 1), S (Iv.1.1)

+

—cs8 W= (4 — B @+ L ) Valr, F)de’ +

) o (IV.1.2)
+ b ) vl ) @0 — L),

where ot o .
. S \
av +° + a' : (IV.l'B)
Assuming k = const :
= | @+@+3,)dz -
. ! (Iv.1.4)

Integrating each term of egs.(IV.l.l) and (IV. l 2) with respect to r within the
boundaries of the hemisphere, we obtain

I

oL 2n(i—k)B(t)+kSI (r,r)l‘l(r)dm—}- ‘

i

+k§.(r,r)r,(r)dm'——gfl(v,r)dm o (Iv.1.5)

.

_.£‘_2;¢(1—-k)B(T)+kSII(T, r)ls(r)de’ + !

+I¢SI, (x, ') I‘l(r)do;'—S I (v, N do;

J (IV.1.6)

Here ‘ ,
1 1 ’ :

L) = 2 ) o = 2 \Va (r, 7') do, (1.1.7)

Ty () :,%Shz(", r') do =£;SY21(", r')de. (IV.1.8).
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We can then present the scattering function (y(r, r!) in the form of
, > Kk — ! i
v(r,r)=kz_ock[z>,.<pm(u)+22 Pk ) Pl @) cos v (9 — )] |

In this case,

L, ()= P P i §
éﬂck km)g () di, (0.9

o 5

T, (r) = -",‘—Z (—1)*cPy (') Spk(l*)d!‘~ (Iv.1 10):

k=0
Let us check the sums and differences of eqs.(IV.1.5) and (IV.1.6):
B — (BB @+ k(L + 1) O+ T)do’ = (¢, + 1) o, \ (1v.1.11)
LU Rt AT SENER A AR NS (17.1.12)
It follows from eqgs.(IV.1.9) and (IV.1.10) that
1 ‘ 1
L+ =Yool @) \Pe@an (Iv.1.13)
. ‘
- 1 i
L= Ty =YaPe @) |Pe ds, | (IV.1.14)
r o i

where %' and .’;" are the sums of even and odd values of k, respectively. It is
known (see Chapter II) that

, i k=0,
\ ~ i k=24,...2m.
ydv = \o
Hence, \P;(\’
L]
. rl + P’ =
and eq.(IV.1.11) will become
O 4n(t— kB —(t —k)§(1,+1.)da. (1v.1.15)

Let us next examine the quantity I (u) - I;(u). It is easy to show /139
that irrespective of the form of the indicatrix, this value has the following
properties:

l.OSrl(u)-rg(u)<lfor0SuS1
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2. 4 =T, -0 for u - 0.

In the long-wave region of the spectrum (3u < A < 4Ou) the parameter p
varies within the limits of

1<p<10, I
i.e., the scattering indicatrix is represented by a Legendre polynomial series
with two to twenty terms. Examples of the expansion factor G, of such indica-

trices (Bibl.1l) are given in Table IV.l.1l. Only the odd k contained in
eq.(IV.l.ll;-) are given.

TABIE IV.l.1

31 13 15 17 19 21

p=10/ 2,14
P=20.55

2.63 | 2.61 |2.94|3.47 |4.13]4.74]4.34/2.23]|0.18] 0.03
[§) .

The relation of I} - I; to u in both cases is plotted in Fig.IV.l.l. We
see that I'; - I, depends relatively little on the degree of elongation of the

A

a.5

i
o0 0.5 Lou

Fig.IV.l.1 I} - I, for Different Elongations
of the Indicatrix

indicatrix and is everywhere less than unity. If we also note that k < 1, it
becomes clear that the first addend on the right-hand side of eq.(IV.l.lZS is
small compared with the second. In some cases, for instance, at k <1, i.e.,
for values of A for which Oy < oy + oy + 77',,,; , this addend can be neglected.
However, if the first addend is retained, an approximate calculation is suffi-
cient in view of the relative smallness of this addend. Thus, the calculations :
made with various indicatrices show that, with an error not exceeding 25%, it
can be assumed that
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1
Iy =Ty =GPy W)\ Py (wydp = 3 Cup.
1]
i

Outside the vicinity of the point u =1, the error is much less than 25%.

From the last expression it follows that

S Iy — 1) (T) — Ty) do’ =5’;—‘S (I — ) pdo = 5 (Fy— F)
+ +

and eq.(IV.1.12) assumes the form

dt

_d(F1+Fg) k(]l(l?1 Fz)—_g*_(lx—fz)d"’- ' (Iv.1.16)

For further simplification of the system of equations (IV.l.15) and (IV.1.16) L]_—LL_
we will assume that

1

§(11+I’)dm=§r(]‘+l’)"d‘°; j (1v.1.17j
( |

o)

- 1 . . . . .
For p = = this assumption corresponds to Schwarzschild's approximation.

I,—I)de = & (I, — I) pdo.
+ (Iv.1.18)

Other values of i give different variations of the two-flux approximation.

Strictly speaking, u in egs.(IV.1.17) - (IV.1.18) is a variable quantity.
Methods of determining this variable and of evaluating the error introduced on
replacing @ by a constant, are proposed in a number of papers [see for instance,
(Bibl.2 - 4)]. We hold the view that © = const; however, unlike in other vari-
ants of the two-flux approximation - here as well as in Chapter II - u is not
assigned beforehand but is determined from the physical condition. In addition,
with our method of obtaining the approximate equation for fluxes, only one para-
meter U is introduced whereas, in the usual approach, a second parameter is re-
quired which generally is a variable parameter connected with averaging of the
indicatrix [see, for instance (Bibl.4)].

For the conditions (IV.1.17) and (IV.1.18), egs.(IV.1.5) and (IV.2.16)
become

. d(F1— F3) 1—k

—4n(1 —k)B —uF F %
- (1~ k) B(t)— (Fy + Fs), (Iv.1.19)
JUEL 921--’-)(& Fy).

(Iv.1.20)

After solving these equations, we obtain
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T % i

Fy = eRenort + SR + P, (B () et e+, | B (o) e-vi-vatr, |
| é : b(v.i.21)

b

- Te
Fy= Ry + GRie + Py (B (@) et + P, | B evenar, | (1v.1.22)

where

Rx——‘i—i——k-‘ Ry=1+1=F, |

bp ) pp |
Py=pp — (1 — k); Py=jip + (1 — B); |

p —— .

B 2 (Iv.1.23)

From eq.(IV.1.23) it follows that the value u must satisfy the inequality

- 2 ‘
p<ig- ‘

The constants ¢, and c, in egs.(IV.1.21) and (IV.1.22) are determined from the
boundary conditions. Let there be given: the flux of long-wave radiation F,(0)

that reaches the lower boundary of the cloud from below and the radiation flux
Fo(To) arriving at the upper boundary; then, :
4 _ 14

6 = 7::{ Fy (1)) —nP, §'B (t) e-rt=t dt} ’ (Iv.1.24)
¢ = R—l"{ F (0) - "Pli B () e-ptdt} . (Iv.1.25)

o

The last expressions were obtained for the condition:

|

e*’"-r< 1, f

which, obviously, always exists in the case of real clouds because p is not
small (see Table IV.3.l).

Section 2. Determination of the Mean Cosine and of the
: Fluxes on _the Boundaries

We will determine the numerical value of u from the following considera-
tions. In the inner layers of sufficiently dense clouds the derivative dB/dr
is small so that, at p = 1, the following relations are valid with a higher de~
gree of accuracy: '

T

\B@)ero-nde = 1B, | (1v.2.1)

0
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Te

\ B -p{l—t _1
S (t) e )dt——;B(t),

T

(IV.2.2)

The possibility of using eqs.(IV.2.1) and (IV.2.2) is discussed in detail in
Chapter VI, Sect.5. With the aid of these equalities, the relations (IV.1.21)
and (IV.1.22) give for T = 75/2 1

| Fi(v) = ip (P, + Py) B ()= F(x) |
or [see eq.(IV.1.23)] :

10 = 2B ) = Fal) (17.2.3)

Therefore, in the inner layers of sufficiently dense clouds the ascending radia-
tion flux is equal to the descending and the resultant flux F, - F, becomes
zero. Measurements of radiation fluxes in a cloud made by V.L.Gayevskiy
(Bibl.5) also showed that F; - F, = 0 at some distance from the edges. This
means that the inner layers of the clouds are in a state of thermal dynamic
equilibrium and that here the thermal radiation must be equal to the radiation
of a black body for the given temperature. Hence,

Fy(t)=F3(v)=nB(x) for ' (Iv.2.4)

and, therefore,‘; = -%—.

We note that, according to egs.(IV.1.17) and (IV.1.18), the value [ is the
average cosine of the polar angle of the direction of propagation of the long-
wave radiation.

We will compute the radiation flux leaving the boundaries of the cloud.
Equations (IV.1.21) - (IV.1.22) and (IV.1.24) - (IV.1.25) will then yield

F To) = R & ’

1(To) = F, (To)R_:+n[P2—~PI %JS B (t) e-pGo-) gy (Iv.2.5)

Fy(0) = F,(0) T RO | g Iv.2.6
OO L afn 8 e, w20

The ratio R, /R, obviousiy repive...’. _ rave albedo A of the cloud which

is equal to
fHo_ opp—0—k

A=p = wp (1 —ky (Iv.2.7)

The last formula together with eq.(IV.1.23) show that A depends on c¢,, i.e., on
the scattering indicatrix and on the ratio of scattering to absorption. It is
obvious that A = O for pure absorption and A = 1 for pure scattering.

Equation (IV.2.7) can be applied to spectroscopic problems. In fact,
knowing the wavelength and having assigned the mean droplet radius, the gquanti-
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ty C, can be determined from Table I.4.13 after which, from measurements of A,
the quantity k can be computed, i.e., the ratio of scattering to absorption.
If, conversely, k and A are known, then C; can be computed by means of egs.
(Iv.2.7) and (IV.1.23) and the mean radius can be determined on the basis of
Tables I.4.13 and I.L.14.

According to eq.(IV.2.7) the albedo does not depend on the optical thick-
ness of the cloud and reflection from each boundary proceeds as if there had i
been no second boundary, i.e., as from an infinite medium. We recall that for |
visible radiation all real clouds that transmit light are finite. In the near-!
infrared region, clouds are infinite only in the middle portion of the widest |
absorption bands Y and (3. Because of the strong absorption in the region of
thermal radiation, all real clouds that are not too thin are semi-infinite,
i.e., they do not transmit the radiation of the layer above the cloud to the
layer below the cloud and vice versa.

Making use of the relations (IV.2.1) and (IV.2.2), egs.(IV.2.5) and
(Iv.2.6) can be reduced to the form of

Fr(t0) = AFx(t0) + 21 (1 — A) i B (v0), (Iv.2.8)

F2(0) = AFy () + 2n(1 — 4) i B (0), (1V.2.9)
2.9

where 2mB(T) according to_eq.(IV.2.3) represents the radiation flux of the !
cloud itself at arbitrary u. |

- 1
At u = - the radiation from the boundary obeys Kirchhoffts law with an
accuracy satisfied by the equalities (IV.2.1) and (IV.2.2) at T =O and 7 = To.
On the lower boundary, the equality (IV.2.2) may not hold because of the slow
increase in T with height (slow increase in liquid-water content), as a result

of which the derivative

may be great. As shown in Chapter VI, the tempera-

dB :
ture gradients are high on the upper boundary and > generally speaking, may
also be considerable. However, the evaluation made in Chapter VI shows that
eq.(IV.2.1) holds in the vicinity of the upper boundary with satisfactory accu-
racy when the temperature gradients are of the order of not more than 10 per
100 m if the liquid-water content of the cloud is not less than 0.1 gm/m> .

From egs.(IV.2.8) and (IV.2.9) and from previous remarks it follows that
the radiative heat exchange in both boundary layers of a sufficiently dense
cloud proceeds independently and is determined only by the properties of these
layers and of the adjoining portions of the atmosphere outside the cloud. In-
side the cloud, there is no radiative long-wave heat exchange - the inflow of
heat is equal to zero [see eq.(IV.2.3)]. If the non-radiative forms of heat
exchange are excluded from consideration, it will be found that the cloud di-

vides the atmosphere into two unconnected parts in each of which the thermal /143

state is determined by their own energy sources. In the layer below the clouds,
such an Mexternal source® is represented by the radiation of the Earth and to a.
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lesser extent by the inflow of heat from the sun in the near-infrared region.

In the atmosphere above the clouds, there are no other radiative sources of heat
aside from solar radiation, if the weak inflow of radiation from the strato-
sphere, discussed in Section 3 of Chapter I, is disregarded. Therefore, at
night under conditions of radiation equlllbrlum, the atmosphere below the clouds
should necessarily have a temperature almost equal to absolute zero. Actually, .
this does not occur because of the non-radiative forms of heat exchange. |

Section 3. Spectral Albedo of Clouds in the Iong-Wave Region ;

The calculation of the spectral albedo was based on the optical charac-~
teristics of clouds computed by K.S.Shifrin and is presented in Section /4 of
Chapter I. Table I.4.10 gave the values of the attenuation factor in a cloud

Dy, = @, a2+ av, ax + Op an, (IV-Bol)

as the mean for spectral intervals Lu in the reglon (4L <\ < 36u), for a droplet

radius of a = 6.265u at various values of py and t°, while Table I.h.1l showed

the values of the scattering coefficient o, 5) for the same conditions. Knowing:
and © A it is possible to compute first k and then the basic parameter of

tée probléﬁ namely, the value of p which is determined from eq.(IV.l. 23).

Table IV.3.1 gives the results of computations of the spectral values p for

E = --:-]'2--;.9v = 0.1, 0.2, and 0.5 gm/m°; t° = 0O, -5, ~10, and C; = 0.5, 3 (which,

according to Table I.4.13 represents the extreme values of C; ). The Table shows
that p does not assume values less than 0.7. At the same time, the guantlty ’
Dar in Table I.L.10 shows that T, is greater than 9 at o, = 0.1 gm/m°, H 2

= 0.5 km* where H is the thickness of the cloud layer. Therefore, the assump-
tion € ? ° <1 holds for real, sufficiently developed clouds. Table IV.3.1l
indicates that, outside the spectral interval (8 - 12u), the inequality e *7 < 1
holds also for very thin clouds.

The results of computing the albedo A by means of eqg.(IV.2.7) with the
above input parameter are presented in Table IV.3.2% and in Fig.IV.3.1, which
makes it possible to establish the follcw1ng characteristics of the behav1or of
A as a function of A, c¢;, Py, and t°.

t

1. The albedo depends largely on the shape of the indicatrix or, more ‘
precisely, on the quantity C,. As shown by Tables I.4.13 and I.,4.lk, the value'
of C, fluctuates within the limits of 0.5 - 3. Table IV.3.2 indicates that, in:
this case, A is reduced two-fold. We note that, within the limits of the long—‘

wave region of the spectrum, C, varies from 0.5 to 2.5.

2. It follows from Fig.IV.3.1l that A depends on the wavelengths and

* The errors in the value of D, (Bibl.6, see remark on p.42) were corrected in
Tables IV.3.2 and IV.3.1l. :
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increases greatly in the atmospheric ™ransparent window' (8 - 12u).

The interval (8 - 12u) is distinguished also by the peculiarity that the
albedo here does not depend on the temperature or on the liquid-water content.

A ”‘8/1 ”'_’6’20_5

0.2r

o1y

Fig.IV.3.1 Albedo as a Function of the e of
Indicatrix (a), of the Temperature (b),and
of the Water Content (c)

Both these facts can be attributed to the smallness of @, at (8 < ) < 1l2u).
Here, the quantity k is determined by means of the formula

Op

GU
v 1 Oy 2, + G,

k=

and hence, does not depend on t° and ¢py. Moreover, the absorption of droplet M
water in the transparent interval is relatively small; therefore, k increases
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TABIE IV.3.1

fp, g/m" ey, ¥m*
t, °C
0.1 I 0.2 0.5 0,1 0.2 0.5
=0,5
48 p ‘ 16—20 p
0 1.58 1.42 1.22 1.61 1.55 7%
—5 1.50 1.33 1.16 1.58 1.52° -
—10 1.4 1.26 1.12 1.55 1.50
8—12 p 2024 p
0 1.06 1.06 1.06 1.75 1.65 1.55
—5 1.06 1.06 1.06 1.70 1.61 1.52
—10 1.06 1.06 1.06 1.65 1.57 1.46
12—16 p 2428 p
0 1.54 1.54 1.55 1.83 1.7 1.67
—9 1.53 1.53 1.53 1.79 1.70 1.60
—10 1.53 1.53 1.53 1.74 1.66 1.57
€L = 3
4—8 pn 16—20 p
0. 1.40 1.18 0.94 1.43 1.35 1.28
-5 1.28 1.08 0.88 1.38 1.31 1.27
—10 1.18 0.99 0.83 1.34 1.29 1.25
8—12 p 2024 p
0 . 0.70 0.70 0.70 1.62 1.49 1.35
—5 0.70 0.70 0.70 1.55 1.43 1.32
—10 0.70 0.70 0.70 1.48 1.37 1.23
12—16 p 24—28 p ,
0 1.33 1.33 1.32 1.74 1.62 1.46
—5 1.33 1.33 1.32 1.68 1.55 1.41
—10 - 1.33 1.33 1.32 1.61 . 1.49 1.37
TABIE IV.3.2
ep, gim' ey, 9/m*
e 0.4 0.2 0.5 0.1 0.2 0.5
= 0,5 )
4-8 p 16—20 ja
0 0.09 0.14 0.2041 ¢.09 0.10 0.12
—~5 0.12 0.17 0.2252 0.10 0.11 0.12
—10 0.19 0.10 0,42 0.12

0.2424
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TABLE IV.3.2 (conttd)

Py, §/m? Py, Iim’
t, °C
9.1 0.2 0.5 0.4 0.2 0.5
8—12 p 20—24 p
0 0.27 0.27 0.27 0.05 0.08-°1° 0.10
-3 0.27 0.27 1 0.27 0.07 0.09 0.14
10 0.27 0,27 0.27 0.08 0.10 0.13
12— 16 2%—28p
0 0.11 0.11 0.11 0.03 0.05 0.08
-5 0.11 0.11 0.11 0.04 0.06 0.09
—10 0.114 0.14 0.11 0.06 0.08 0.10
Cy — 1.
4—8 16—20 p ,
0 0.08 ! 0.12 0.18 0.08 0.09 0.10
—5 0.10 0.14 0.20 0.08 0.10 0.14
—10 0.13 0.17 0.22 0.09 0.10 0.14
8—12p 20—24
0 0.24 0.24 0.24 0.05 0.07 0.10
-5 0.24 0.24 0.24% 0.06 0.08 0.10
—10 0.24 0.24 0.24 0.07 0.09 0.11
1216 p 24—28 p
0 0.09 0.09 0.10 0.03 0.05 0.07
-5 0.09 0.09 0.10 0.04 0.06 0.08
—10 0.09 0.09 0.10 0.05 0.07 0.09
€} = 2
4-8 p 46—20 p
0 0.06 0.09 0.14 0.05 | ..0.06 0.07
-5 0.07 0.11 0.15 0.06 . 0,07 0.08
—10 0.09 0.13 0.17 0.06 0.07 0.08
‘8—12 p 2024 p
0 0.19 0.19 0.19 0.03 0.05 0.06
—5 0.19 0.19 0.19 0,04 0.05 0.07
—10 0.19 0.19 0.19 0.05 0.06 0.08
12—16 p %28 p
0 0.07 0.07 0.07 0.02 0.03 0.05
-5 | 0.07 0.07 0.07 0.03 0.04 0.06
—10 0.07 0.07 0.07 0,03 0.05 0.06
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TABIE IV.3.2 (end)

) Py, Im’® ' fo, 9/m’
f, *C -
0.1 0.2 ’ 0.5 0.1 l 0.2 l 0.5 .
Cy == 2.5 .
+~8p 16—20 :
0 0.04 | 0.06 0.14 0.04 0.04 L |
. 0. . 04 | 0,06 :
-;g g.o;s 0.08 0.12 0.04 0.06 | 0.6
.0 0.10 0.14 | 0.04 0.6 | 006 :
8—12p _ 20—2%p . |
0 0.15 0.15 0.15 0.02 0.04
. . . . 0.04
-5 0.15 0.15 0.15 0.03 0.04 0.06
—10 0.15 0.15 0.15 0.04 0.04 0.06
12—16 p 2%—28
0 0.06 0.06 0.06 0.02 0.02
. : . . 0.04
—5 0.08 0.08 0.06 0.02 0.03 0.04
—10 0.06 0.06 0.06 0.02 0.04 0.04
and thus also A.

L. In the other spectral intervals, as shown, for instance, in Fig.IV.B.l;
the albedo increases with increasing liquid-water content and with decreasing
temperature.

5. Outside the transparent window, the albedo seldom exceeds 15% if t°>
> -10°. Therefore, with an error not exceeding the indicated value, the cloud
in the entire long-wave range, except for the segment 8 - 12u, can be con31dered
a blagk body if the water content is o, > 0.1 gm/m° and the temperature is t° =
2 =107,

Averaging the albedo by spectral intervals of Lu yields too rough an esti-
mate for a number of problems.

Table IV.3.3 gives the spectral albedo of clouds in the interval 8 - 12u

while Table IV.3.4 gives the interval 3 - Lu for various temperatures and for a.
water content of 0.2 gm/m°. The computations of the albedo shown in Tables

IV.3.3 and IV.3.4 were made with the data by K.S.Shifrin (Bibl.6). The two
selected spectral intervals are of substantial interest in the problems of
identifying clouds and of determining their temperature when observed from

above. Because of the transparency of these intervals the radiation reaching [;&Z
the observer is here determined principally by the temperature of the underlylng
surface, i.e., of the clouds or of the surface of the ground. _

Having measured the radiation for A = 11 - 12u it is obviously possible to
compute the temperature of the underlying surface by means of Planck'!s formula.
A simultaneous measurement at X = 8u will permit to determine the nature of the
underlying surface also in the case of low clouds, i.e., to separate the cloud
according to the substantially smaller (by about 40%) radiation in this case.




Summarizing the above statements, we will first answer the question forﬁd%
lated by Gergen (Bibl.7): "What must be the thickness of the cloud for it to be
considered a black body?" Our evaluations show that, strictly speaking, real

TABIE IV.3.3
A, p 8 ‘ 9 l 10 1 l 12 ;* ‘
; |
4% | 4« ‘ 18 ' 12 5 ' 5 | |
TABLIE IV.3.4
Aw —15 | —5 | 415 %
|
3 9| 6| 5 ‘
3.4 12 | 12| 11
4 25 1 221 24

clouds are not black bodies anywhere in the long-wave region of the spectrum.

Yet,clouds containing no less than 50u of liquid-water¥*, i.e., essentially all
real clouds, radiate according to Kirchhoff's law if the temperature gradient

at the boundary does not exceed 10°/100u (see Chapter VI).

The albedo of a cloud reaches a high value only in the region of the /148
"atmospheric window® (8 - 12u) and at A = L4u. Outside of this region, the al-
bedo fluctuates within the limits of 5 - 15% at a temperature of t° = -10°. ‘
Subject to such an error, we can thus consider a cloud to be a black body in the

wavelength intervals of (4 - 8u) and X » 1lu.

‘ An evaluation of the Mdegree of blackness'" of clouds was given by Mac-
Donald (Bibl.8). The paper poses the problem of improving and developing, on
the basis of recent data, the views of Brent (Bibl.9) who considered a cloud to
be "black™ in the entire long-wave region of the spectrum. It seems to us, “
however, that the work was not done on an up-to-date level and contains errone~
ous premises. Primarily, the author does not take into account the basic dif-
ference of absorption in a scattering medium as compared with a non-scattering
medium. Actually, at the same absorption coefficient, the absorption in the :
second case approaches 100% with an increase in content of matter or in optical

R

- H
#* We call the value 251— the liquid-water content.
Py
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thickness. In the presence of scattering, the absorptivity of the medium never
reaches 100% and approaches, at the limit, the value 1 - A, where A is the al-
bedo of the semi-infinite layer. Further, in the same paper (Bibl.8), the ab-
sorption coefficients of a continuous water layer are used, which was unneces~
sary (at X » Lu) since the data by K.S.Shifrin for droplets were available, a
fact apparently not known to the author (Bibl.8). Finally, on the basis of ;
several computational data by Kaugen on the absorption of droplets [see (Bibl.8)
and Chapter I, Sect.l] MacDonald made an attempt to establish the degree of §
blackness of a droplet cloud as compared with the blackness of the layer. He
arrived at the erroneous conclusion that the absorptivity of a cloud in both §
cases would be greater only because of the difference in the value of the ab- |
sorption coefficients. Since, in the latter case, the absorption increases also
because of the elongation of the radiation path as a result of scattering, the
author draws the following incorrect conclusion: Inasmuch as a continuous water
layer of 100u absorbs all of the incident radiation, a real cloud which, as a
rule, contains such a quantity of water will certainly have this property, i.e.,
will radiate like a black body. This conclusion is incorrect both because of
the above-shown difference between the absorption processes in scattering and
non-scattering media and also because of the fact that, according to Table
I.4.12, the absorption coefficient of droplet water for different wavelengths
can be both greater and smaller than in the case of a continuous volume.
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CHAPTER V /149

RADIATIVE EQUILIBRIUM IN AN ATMOSPHERE CONTAINING
A CLOUD LAYER

: In this Chapter, we investigate the thermal behavior of the atmosphere |
containing a cloud layer. Unlike in the other Chapters, the subject here is not
the cloud but the ambient space and the changes introduced by the cloud in the |
thermal state of the latter. Only radiative heat exchange is discussed here i
since the principal thermal effect of the cloud is determined by its radiation
properties.

Section 1. Basic Relations

An infinite homogeneous horizontal cloud layer of finite thickness divides
the atmosphere into two layers, in each of which the heat exchange under condi-
tions of radiative equilibrium is determined by the following equation (see ‘
Chapter I, Sect.2):

A, Ay

Q. (_z)+ E‘EA (2) Sll (z, "dod\ = 4::8 ax (z) Bx (T) dA, (V.l.l).g

A

where Q, (z) is the inflow of heat due to absorption of solar radiation. Accord-
ing to the rough model of the absorption spectrum of a cloudless atmosphere con-
structed in Chapter I, Section 5, we will here divide the spectral intervals
(\;= 3u, 25 = LOu) into three parts: (R,, Ro, Re) to which correspond small,
medium, and large absorption coefficients.

It is known [see for instance (Bibl.1l)] that, in the region of large ab-
sorption coefficients, the long-wave transfer exerts no influence on the tem~
perature; the absorbed energy is equal to the radiant energy:

a \Indod, = %
RS’ )«S Al A 47 1§ dABA (.T) dA. (V.l.2)
This latter relation will not exist near the upper boundary of the atmosphere
since a medium of zero absorption is located on the other side of the boundary.
Near the cloud, eq.(V.1l.2) is valid because of the large absorptivity of the
latter.

In accordance with eq.(V.1l.2), the integration along the wavelength in
eq.(V.1.1) extends only over the interval R, + R.

As seen in Chapter I, Section 5, the interval R, consists basically of the
wavelength region (8 - 12u), the absorption coefficient o, is here equal to ’
0.2 cm?/gm, the interval R, can be considered to be approximately equal to
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(12 - L) and (16 - 17u) and can be given an absorption coefficient of o, = 1150
= L cm®/gm. If we introduce . ;

B,-=§‘BA(T>dx,

7

t,~=ajSpw(z)dz=ajrn, i=1,2,
: 0

then eq.(V.1.1) can be written in the form of

0.1+ % & [ [1us (5 o + (Lo (1) | = 3y Gty ). | (v.1.3)

=1 + + j=1 |

The radiation intensities I,, and I?, are determined from transfer equations of
the following form [see eq.(i.3.15) : 4

‘”1.7‘
cos 8 = = B;(v) —1,,(v;, ),

(v.l.h)

cos @ i _ g I |

31], - Y (TJ') — f2,j (T)'v J"). (V.l.S)
Considering separately the layer below the cloud, the cloud layer itself, and
the layer above the cloud, we will denote the quantities referring to the layer
below the cloud by the subscript 1; those referring to the layer above the
cloud, by the subscript 2; and those referring to the cloud layer proper, by
the subscript O.

With the given boundary conditions, egs.(V.l.4) and (V.1l.5) can be solved
for IL,(T&, r) and L (7y, r). If the intensity of the ascending radiation on
the lower boundary of the layer Iiﬁ(o, r) and the intensity of the descending
radiation on the upper boundary of the layer Iég(TL3, r) [here T,y is the total
optical thickness of the ith layer in the jt spectral interval; below, we will
not use the subscripts j in the quantities TL,] are known in each layer, then
the solution of egs.(V.l.4) and (V.1.5) in the ith layer would be represented
in the following form [see egs.(I.2.37) - (I.2.38)]:

T
|

It n) = 150, 1) e =0 4 sec | B (1) esec ooy, |
0 =

(V.1.6)
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I (6, 7) = I (50, 1) €640 1000 B () e-soc s ‘
, § j ( ) d‘. (V.lo7)
We will prescribe the following boundary conditions: |

1) forz =0

113 O = B, (V.1.8)

where B, is the radiation of the underlying surface proper in the jth wave- Ziﬁl
length interval, which is assumed to be known and equal to the radiation of a |
black body at the temperatures of the lower boundary of the atmosphere;

2) for z = z,(1 = T1,)

I(ZJ(fli 1') = I(O) (0 r)s (V¢109j

3) for z = z,(7 = 15)

2 2 '

R 2) (0) :
i (0) = D! Fyli (7] ,

%i * ;31 b (f0) + 59 (v.1.10)

where mq is heat flow from the cloud due to non-~radiation factors. In view of
the fact that the cloud isolates the layer below it from the layer above it, as .
shown in Chapter IV, Section 2, it is not permissible to assume a condition of
radiative equilibrium in the cloud. In this case, at a sufficient optical .
thickness of this cloud, a temperature of absolute zero will prevail in the
atmosphere above the clouds at night.

Condition (V.1.10), with the additional assumption

T4y (0 1) =-LF% @) (v.1.11)

will yield \ |
) IO =1 S F () + q.

: | 7 ) 1.7 (T (v.l.12)

B

U

J

For simplicity, we assume on the upper boundary of the atmosphere z =
(T = 1,) the following condition:

By =0, (v.1.13)

In egs.(V.1.8) - (V.1.13) z is counted from the Earth's surface; z, and 2,
correspond to the lower and upper boundaries of the cloud; T; in each layer is
counted from its lower boundary.

Substituting the boundary conditions in egs.(V.1.6) and (V.1.7) we obtain

Iil.; (v, 1) = B, e 4 sec GSB;',I) (1) esec -t dg, (V.l.ll-l—)

o

117



1;1; (x, ) = I (0, r) e-5¢c8(r-7) | geg QS B}” (t) e-sec 0t-7) dt,: (V.l.lSj

: |

|

IP (v, 1) = I (0, r) e 0= 4 goc 985}' (5) eseco=-0 gy, (v.1.16)
1]
I (v, 1) = secd S B (1) e-sec 0= gy (V.1.17)

? The relations (V.1l.1l4) - (V.l 17), together with eq.(V.1. 12) show that the
1nf1uence of the cloud on the radiation balance of the medium outside the cloud
is produced by F{$’ (1), L3’ (0, r) and q. In determining these quantities

(except q), we make use of the results of Chapter IV with the additional assump-
tion

7O O,A' I ) z
B0, = L ). (v.1.18)

We note that the relation (V.1.18) as well as eq.(V.1.11) indicate isotropy /1 5
of the radiation leaving the boundaries of the cloud.

According to egs.(IV.2.7) and (IV.2.8), we obtain for & = 1/2 ;

A = 4FB0 + 20— 4) B &), | (V.1.19)

F0,1) = AFS(w) + 1 (1 — 4)B® ©). (V1. 20)"

The values of Fﬁ;)(fl) and F‘Z)(O) in the last equation can be found from

eqs.(V.1.1,) and (V.1.17). Multlplylng both sides of eqs.(V.1l.14) and (V.1. 17)
by the cosine § and integrating for r over the boundaries of the hemisphere, we;
obtain 1

R () =2x [Bfi(5) +\ B () B, (5, — ], ( )
; , v.1.21

F3)(0) = 2n S‘B?’ t) E, (t).dt. :
0 (v.1.22)

i
|

Substituting these expressions of flux in eqs.(V.1.19) and (V.1.20), we find

FO (v) = 2x4; S'B?’ OB Od+x0—4)BP@E), (v.1.23)

0

F) (0) = 24, [Be.iEa () + OSB?’ () E, (Wx“t)dt]+ﬂ(1 — A4, By (V.l.%i

The equality (V.1.23) together with eq.(V.1l.12) yields




(V.l.25)

j=1

31O =a+3 {24, (B OE0a+ 0 — 4) BP0} .
=1 0 _ .

Here, I3’ (0, r) is determined from eq.(V.1.2h) together with eq.(V.1.18).

_ We shall now turn to the equation of the heat balance (V.1.3) and will

. transform it by utilizing (V.1l.15) - (V.1l.17). Having made the usual transforma-

5 tion (see Chapter, Sect.2) we shall obtain the following expressions of the
, radiation balance in the atmosphere under and above the cloud.

b7 !

L .
0 (@) + 20 3 & {Buss )+ | BR () £, (v — 1 e+ \

J=1 0

+ Xy (n— 1)} = 4::2 5B (3), | (V.1.26)

T Ty Rl . »
Q0 (v) +2n E: 3 {Y.E, (z) +§ BYOE (v —that }=4n) 580 ¢

i ()

= (v.1.27)

Here X; and Y, are constants equal to Iéj)(o r) and Iﬁj)(o, r), respectively, |
which are determined by means of eqs.(V.1.25S and (V.1.24), taking into ac- /1
count eq.(V.1.18). Equations (V.1.26) and (V.1.27) make it possible to deter- |
mine the radiation temperature of the atmosphere, taking account of the follow- |
ing factors: f

1) presence of a cloud which absorbs and scatters long-wave radiation;

2) interaction between long-wave heat exchange and heating due to absorp-
tion of solar radiation;

3) presence, in the absorption spectrum of the air, of regions with weak,
medium, and strong absorption.

We will solve several model problems, to clarify the effect of each factorQ

Section 2. Night Conditions; the "Gray™ Atmosphere

‘ First, we will consider the night conditions (Q; = O) but disregard for thé
moment the so-called M"selectivity™ of absorption, i.e., we will introduce in the
interva%}Rl + Ry, the mean absorption coefficient equal to dny = 1 cn’/gm [see
(Bibl.2)1. '

In this case, egs.(V.1.26) and (V.1.27) will readily yield _
1 1 ¢ 1 o ‘
B(l) ('t) —_ TBeEz () + e §B(l) (t) El (lt — t]) dt 4 -2—°XE‘ (1.'1 T),; (V.2.1)
.B®(x) = _;_YE, (v) + %& BY()E, (v —t]at; (V.2. 2)f

0
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where B'*) (), X, and Y are integrals of the corresponding spectral qua.ntities‘
for the interval R; + R;.

For solving eq.(V.2.1), we will introduce the unknown functions B'*’ ()
and BV (1) which satisfy the equations

B () = +E 0+ (B 0 E (x—t)a,

i

{ (V.2-3)

* o

BY (1) = iE (m—9+—5 S B (t)E, (|t — t)de. i (V.2.h$

Let us assume that eqs.(V.2.3) and (V.2.4) are solved. The function }
BY (M= B.B" (v) 4+ XBY (v) 1 (v.2.5)

apparently satisfies the initial equation (V.2.1). This leaves the unknown
constant X to be determined by means of eq.(V.1.24).

If the temperature on the
lower boundary of the cloud is considered to be continuous, i.e.,

B (0) = BY (v,) = BB (v,) + XB™ (),
then we shall obtain from eq.(V.1.24)
X =24 BE, () + B BY () Ey (v — ) dit +

0 . ?
+x\BY 0B, —0a ]+ —2) BB x) + XBY w1

(-]

or

L35k

e

24F (t)+2ATlB‘“tE —di+ (1 — 4B
L_p B § ) Es (21 — ) di + (1 — A) B (vy)

o . (V.2.6)
1 —24§ B () Ey|vi—t)dr — (1 — A)BW (¢
o

: These relations yield the sought function B‘*’ (7) without difficulty. _
Next, let u us § add egs.(V.2.3) and (V.2.4) termwise. It is easy to verify that
B (-r + B'*7 (1) =1 is the solution of the obtained equation and also is the

unique solution, as follows from the general theory of Fredholm integral equa- |
tions of the second kind.

By substituting, in eq.(V.2.6),

B(l) (T) — 1 B(l) (T) V . (V.2- 7)
we will find that, for any A,

X = B,, (V.2.8)

120



after which eq.(V.2.5) will yield
BY () = B.. (V.2.9)

Therefore, if the cloud layer is of sufficient thickness so that its upper
‘boundary radiates according to Kirchhoff's law, a constant temperature equal to
the temperature of the Earth's surface sets up at night in the atmosphere above
the cloud, for the condition of radiative equilibrium.

The problem of determining the radiation temperature of the layer above
the cloud, according to egs.(V.2.2) and (V.1.25), reduces to a solution of the
equation ﬁ

= t e ‘
B =5 E, )+ B0 E (v —tpa (V.2.10)
0
and to a determination of Y from the relation
Y = g . |
1—24 fﬁ"’ (1) Es(¢) dt — (1 — A) B® (0) (V.2.ll)t
[}

If B'®) (7)and Y are known, the sought function B‘®) (1) will have the form
B® (x) =YB® (y), (V.2.12)

We note that, in deriving the relation (V.2.11), the condition of temperature
continuity on the upper boundary of the cloud was used:

B(o) (To) — B(z) (0) — YE(z) (0). E

At A = 0, the equality (V.2.11) becomes

1— B () '; | (V.2.13)

Equations (V.2.11) or (V.2.13) show that in the case of radiative equilibrium
in the clouds, at q = O, we obtain Y =0 and B‘®’(r) = 0, i.e., absolute /155
zero temperature is established above the cloud.

An approximate solution of eq.(V.2.10) can be obtained on replacing it by
‘an algebraic system of the form

*j

B =5 By () + £ B VE(u—thd & j=t,...m  (v.2.1)
i=1 iy |
Here : '

BY=BY(t)ivy=0; =1, |
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If we compute the integrals
Ty '
§ E(u—1pa,

Ti~1

then the system (V.2.14) will become

k » ' ) ;
2B = E, (te) + 2 E}ﬂ I, (tx — 15) — E; (e — )] + '
i=1 |

+ 2 BY |E, (1i, — ©w) — E, (t; — ).

j=k-+1

(v.2.15)%

The solution of eq.(V.2.15) was obtained with the following values of the
problem parameters. The distribution of moisture with height is given by

Pw (2) = py (O)e—az, (v.z.lé)
where a = 0.45 km*

For p,(0) = 6 gm/ma, we have z; =1 km, 2, = 1.5 km. From this, we obtain
m = 0.5 gm/c and mp = 0.65 gn/cm; where m; and m, are the water-vapor con- ‘
tent in the atmosphere above and below the cloud respectively. For o = e
=1 cm®/gm, we obtain further: 7, = 0.5 and T, = 0.65. The conversion of the
radiation function of a black body B(T) from the integral over the interval R, +
+ R, to the temperature was made by means of the following formula:

B(T) = 0446 B, (T) + B, (1)) | (V.2.17)

with Bl(Tg and By (T) taken from the graph in Fig.I.5.3; here B(T) is expressed
in cal/cm®. min. The value of the non-radiative inflow of heat mg from the cloud
upward, and the albedo A of the cloud are also given. Let us assume that mq is
the thermal flux due to turbulent mixing, i.e., .

where 9 is the potential temperature. It is known (see Chapters VI or VII) that

dﬂ
=Ta + P

where Y, = 10 deg/km. Hence, at the usual temperature gradient in the clouds,

we have = 5 deg/km. Let us assume that k = 10° cnf/sec, p = 1.3 x 107°
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gn/cn® and G, = 0.2 cal/deg * gm. This will yield mq = 0.1 cal/cx min. /156

The integral albedo of the cloud in the spectral interval R, + R, was de-
termined as the means of the albedo in the intervals (8 - 12u) and (12 - 1éu),
computed in Chapter IV. At a water content of the cloud of p, = 0.2 gm/m® and
at a temperature of 0°C, the mean albedo, according to Table IV.3.2, was 0.15.
We mention that, after solving eq.(V.2,10), it is possible to determine the

functions B(z)(T) and thus also the temperature distribution in the atmosphere
below the cloud, for any values of A and q. The situation is different when a |
moisture of py(2z) is prescribed. The problem is solved for the prescribed form
of the function p,(z); as soon as this value changes, eq.(V.2.10) or - more §
accurately - the system of equations (V.2.15) must be solved anew. !

Section 3. Radiative Equilibrium by Day

The equations of the radiation balance [eqs.éV.l.Zé) and (V.1.27)] which
were written for day conditions contain addends Q!’ (i = 1; 2) that represent
the influx of heat from the sun to the atmosphere below and above the cloud,
respectively.

In Chapter III we showed that(il) is small; the atmosphere below the cloud
is in about the same condition as at night, with respect to the transfer of :
infrared solar radiation. Therefore, only eq.(V.1.27), i.e., the above-cloud |
layer under daytime conditions, need be considered. : f

The insolation per unit volume is represented in the form of

xl
0@ =ru@| mnolrdoar, (7.3.1)
X _
where Ay = O0.7p, Ay = 2.5p, I;A:representS'the infrared solar radiation (direct _
and scattered). The value Q; was determined by Ye.S.Kuznetsov (Bibl.3), taking
into account all water-vapor bands in the near-infrared region of the spectrum
(see Chapter I, Sect.5). This author (Bibl.3) gives the values of Qa, for ab-
sorption in a separate band. We will confine our calculation to the relatively
rough formula proposed by Ye.S.Kuznetsov, which determines the total inflow of
heat -due to all absorption bands. Namely,

1

5 Qs (m) = py {rae-(s9) T omm) (1 — ) BB s o)

+ 24 cos Lyae-(e+e) o tm* B, [(a + o) m] +
+ 24 cos (1 — 1) Be-B+9) % T E (8 -+ 5) m]}.

(v.3.2)

Here @, B, vy are the parameters of the interpolation formula, of the following
form (see Chapter I, Sect.5): : _

P (m) = ye*™ + (1 — 1) e-Pm, (v.3.3)
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which describes the transmission function of the entire infrared region of the
water-vapor spectrum P(m), where m is the water-vapor content (in gm/cm®).
According to Kuznetsov (Bibl.3) o = 2.48; B = 0.36, Y = 0.192; and ¢ is the
scattering coefficient integrated for the infrared region of the spectrum which,
according to Ye.S.Kuznetsov's data, is equal to 0.5 - 0.6 cnf/gm; 1S = 0.83 ‘
cal/cm®-min is the solar constant for the infrared region of the spectrum; A is:
the albedo of the underlying surface. In our case where only the atmosphere ‘
below the cloud is considered, A represents the infrared albedo of the cloud
layer.

According to the data in Chapter III, within the limits of the infrared
absorption band A is 0.6 - 0.7 for { = 30 - 60°, 1, = 30.

Equation (V.3.2) is not too accurate, but, in general terms, correctly /157
reproduces the behavior of the quantity Q,(m) and leads to errors not exceeding :
about 20%. The main error source is the rough presentation of the integral ab-
sorption function by eq.(V.3.3). Moreover, the relation (V.3.2) does not take
account of the absorption of scattered radiation; however, the resultant error
is not great.

The result of computation of Q3’(m) by means of eq.(V.3.2), at the above
moisture distribution, is presented in Table V.3.l. Here it is assumed that
A =0.4, 0 =0.5 cm’/gm, and ¢ = 60°.

TABIE V.3.1
11 . 1
z, km m, glemt (Lo Q®m) z, km m, gem | Gmpr Q®m) :
1.5 0 0.00184 3.6 0.39 0.00680
2.0 0.13 0.00238 5.1 0.52 0.0214
2.7 0.26 0.,00420 0.65 0.0275

Retaining the "gray™ model of the spectrum in the long-wave region,
eq.(V.1.27) reduces under daytime conditions to the form of

E:,,T Qﬁ:) () + %YE’2 (v) + %SB(’) () Ey (v —t)) dt = B® ©. 1‘

0

(V-B-h)
We will again introduce the auxiliary functions B‘®’(t) and B‘®) () which,
respectively, satisfy the equations

4—,:%‘ oY (v) + -;—S BY () E, (It —t])dt = B? (v)

0

(v.3.5)

and

12,




LE@+ 3\ B0 E (x—1)a =F). ,
) 0 (V.3.6)

Then, the function B3’ (1) which is equal to
B® (1) = B® (v) + YB® (v), | (V.3.7)
satisfies eq.(V.3.4). The constant Y is determined from the relation

9+24§ B® () Ea @) de 4+ (1— 4) B () |
0

Y = (V.3.8)

1—24 jz B (1) Ey (t)dt—(1— A) B (0)
0

Section 4. Allowing for the Absorption "Selectivity™

Neglecting the stipulation of ™grayness™ and introducing two absorption
coefficients @; = 0.2 cm’°/gm and @, =/ cm®/gm, then the following fundamental
fact will be taken into consideration, in first approximation: the existence, /158
in the new spectrum of atmospheric absorption, of segments in which the black
radiation of the earth's surface and of the cloud passes through the atmosphere !
without appreciable inhibition. It is understood that in the layer below the
cloud nothing will change, so that the radiation of the Earth, together with
the back-radiation of the cloud will lead to an equalization of temperature
along the vertical. Therefore, only the atmosphere above the clouds, where the .
temperature must obviously be reduced, need be investigated. Under night condi-
tions, the fundamental equation of the problem, in accordance with eq.(V.1.27),
can be presented in the form of

ma

2 2 :
~ I . » - ;
2 @B (m) = o 3 o, (V5 By (agm) + o \ B/ (m') Ex (ag{m — m’|)dme; - (Vohe1)
=1 =1 "
where a; = 0.2 sz/gm, oy = L cme/gm’

m=§Pw(’) dz.

We recall that the constants Y; are equal to I{j) and are determined from the

conditions (V.1.25). Here we are faced with a new difficulty as compared with
the case of a "gray™ atmosphere. The relation (V.1.25) permits determining the
sun of the values of Y; but not each separately. The latter fact is responsible
for the general difficulty of formulating the boundary condition of the problems
of radiation transfer in a two-layer zone. This problem is discussed in greater
detail in Chapter VI. !

For this reason, it became necessary in this Chapter to introduce the addi-
tional assumptions (V.1.11) and (V.1.18). Here, we will introduce still another
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condition:
120 = k1 (0), (V.h.2)

where @ 2
17(0) = 3 1% (0).

=1
It is logical to determine the weights ki from the equalities [see eq.(V.Z.l?)]i

k= 21D
B -

for a temperature of the order of that observed in clouds of the lower and
middle layers. At T = 270°, we obtain

3 1
=gk =7, l

As shown by Table I.5.11 about the same values of the quantity k, are maintained
at any T in the interval 220° < T < 280°. The condition (V.4.2), together with
eq.(V.1.25), permits to establish that

m,

Yy =150 = ki{g + 24, o; | B (') E, (o m') dm +
| + (1 — 4)) BO (). (V.h.3)

Equation (V.4.l) contains two unknown functions Bga’(m). This can be /159
considered an equation relative to one unknown T(m), but in this case the equa-
tion will be nonlinear. It is more convenient to consider eq.(V.h.l) as a linear
equation with respect to B;(m) and to use it for determining T(m), since the
form of the function By(T) is known. In the solution, we will make use of the
method proposed elsewhere (Bibl.2, 4), with slightly changed numerical values
of the parameters in accordance with the corrections introduced into the compu-
tation of the quantities BJ(T). Table I.5.9 shows that, in the range of tem-
perature variations 220° < T < 280°, the following relation holds with satis-
factory accuracy:

B, (T) = 3B, (). (Vohsohy)

By substituting in eq.(V.4.1)3B,(T) for B, (T) on the basis of this correlation,
we obtain

B (m) (Boy + ) = + 3} Y By (ay m) +

i=1

m,
+5 (B () BolE, (o, |m — m']) + B, (m|m —m' )l dm'. (V.k.5)

;

Let us denote
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3a} E1 (o} | m —m"|) + a2 Ex(aglm —m’ |)

K (m, m') — 3a;+a¢ 1] (V.l{.-é)
i o = __ L] ‘
a= 3a1-il—a;’ a= 3a; + aa (Vh.7)

and then solve the equations

B m) = 5 Ey @y m+ 5 | B () K (m, m) i, | (V.h.8)
- m |
BY(m) = £, (6 m) + 5 | BY () K (m, m) dm’. | (V.4.9)
Then, the function °
B (m) = Y,BY (m) + Y,B}| (m) (v.4.10)

will represent the solution of eqg.(V.4.5)

The constants ¥, and ¥, were determined from the system of equations
(V.4.11) which is readily obtained by substituting egs.(V.4.6) and (V.4.10) into
eq. ( VQLLO 5) : :
. m, _ _ ‘
Yi=ki{g + { IY;B (m') +Y,B, (n')] (64,4, E, (am’) +

o

+ 20,4,E, (@m)l dm’ + [Y,B7 (0) + Y,BP (0)] x

X [3(1—4)+ (1 —A4)l;. (V.4.11)

In the solution of eqgs.(V.4.1l) new parameters appear, namely, the spectral

albedo of the cloud 4 and A . In accordance with the data of Chapter IV (see
Table IV.,.1) we assumed A, = 0.2 and A, = 0.07 which correspond to the spectral
intervals (8 - 12u)and (12 - 16u) for py, = 0.2 gm/n® and t = O° and t = 10°.

Section 5. Vertical Temperature Distribution /160

‘ The temperature profiles for all cases described in Sections 2 - L are
presented in Fig.V.5.1. We will first discuss some general laws which follow
from the computations and from the analyses performed.

As demonstrated above, at a sufficient thickness of the cloud the tempera-
ture in the layer below the cloud becomes constant with height and is equal to
the temperature at the surface of the ground. In this connection, in the pre-
sence of a mechanism that transports heat from the lower boundary to the upper
(we introduce turbulent mixing as such a mechanism) the temperature above the
cloud will become higher than it would be at the same level in the absence of a.
cloud. This determines the temperature conditions of the atmosphere above the
clouds. If scattering is disregarded, one could imagine the ground surface as ex-—
tending to the height of the top of the cloud and radiating like a black body
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at about the same temperature as before.

When scattering is considered, the temperature of each level in the atmo-
sphere above the clouds must obviously be reduced as compared with the case of
pure absorption. Actually, the radiation absorbed per unit volume in the atmo-
sphere above the clouds comes partly from the cloud and partly from the cold

z,km o ;
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Fig.V.5.1 Vertical Temperature Distribution for
Different Models
1 and 2 - Cloudless atmosphere, night and day;

3 and 4 - Cloud, night, with and without account
of scattering; 5 - Cloud, day; 6 - Cloud, night,
selective absorption (differing from curves 1 - 5,
where the absorption spectrum of water vapor is
assumed to be "gray™)

layers above the cloud. The greater the reflection (which represents scattering
in our statement of the problem) the less will be the role played in absorption
by the "warm" radiation coming from the cloud.

We note further that the temperature profile in the atmosphere above the
clouds is determined by the nature of the absorption spectrum (in our case by
the correlation between the coefficients o, and ;) and by the distribution of
moisture with height.

The absolute temperature values depend on external heat sources: mq under
night conditions and mq and Q,(z) in the daytime.

Finally, it is obvious that in calculating the transparent interval

(8 ~ 121), the temperature in the atmosphere above the cloud will be lower than
in the case of a gray atmosphere.
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The above statements on the temperature distribution mean that they all
describe the state of radiative equilibrium. The condition of radiative equili-~
brium is far from representing the true nature of heat exchange in the atmo-
sphere, so that the results of our computations are not applicable to reality.
The purpose of these computations was merely to reveal the role of the cloud }
layer in establishing the radiation conditions of the atmosphere and to clarify
the correlation between the various factors in the overall process of radiative
heat exchange.

: The computed temperature distributions with height for various cases are
given in Fig.V.5.1. Obviously, compared with the case of a cloudless atmosphere,
the temperature in the layer above the cloud increases sharply (see curves 1 ?
and 3). However, this fact cannot be given excessive importance. According /161
to eqs.(V.2.11) and (V.2.12), the temperature is proportional to the nonradia-
tive flow of heat mg which is prescribed independently. By varying mq it is
generally speaking possible to obtain any correlation between the temperatures

on the prescribed level, in a cloudy and a cloudless atmosphere. Nevertheless,

TABLE V.5.1
z, km
0 4,5 1,0 25 .4 33 ]
1 e
g, L) 0.00087 | 0.00095 | 0.0010 | ©0.0019 | 0.0038 | 0.6093
B
< Eg (v) 10,03t |0.0145 | 0.0100 | 0.0053 | 0.0043 | 0.0034

there are reasons to consider the obtained relation (curves 1 and 3) valid,
since the value of wq selected for the computation corresponds to the real
values of the coefficient of turbulent mixing in stratus clouds (see Chapter VI,
Sect.9). Other conditions being equal (see Sect.2), a comparison of the tem~
perature profiles represented by Curves 1 and 3 in Fig.V.4.l and also a compari-
son of Curves 3 and 4 which represent the cases A # O (Curve 4) and A = 0

(Curve 3) show excellent agreement. Above the cloud, in its immediate vicinity,
the temperature varies with height in the same manner in cloudy and in cloudless
atmospheres. Then, toward greater heights the temperature difference begins to
increase (the cross and the circle in Fig.V.5.1 represent the temperature values
at z = », for Curves 1 and 3 respectively) due to the variation in the temperature
profile with the change in water-vapor content m over the entire thickness of
the atmosphere. In the case of a cloudless atmosphere, it was assumed that

m = 1.35. In the case of a cloud, the computation was made for m, = 0.65.

The temperatures below a cloud and at the same height but in the absence
of a cloud show a different behavior. The reasons for the difference in this
case were explained above. A comparison of Curves 3 and 4, as shown previously,
indicates that the neglecting of scattering leads to a noticeable increase-in. - -
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temperature.

The effect of scattering, revealed by a comparison of Curves 4 and 3, con-
stitutes 25% of the total effect of the cloud (see Curves 3 and 1). Such an

estimate of the percentage of scattering agrees with the results of Chapter VI
(see Sect.7).

A comparison of Curves 5 and 4 (obtained with consideration of scatterlng)
also shows the extremely important role of infrared insolation in the develop- ;
ment of the radiation temperature in daytime. This role, as indicated in Fig.2,
as compared with Fig.l, is considerable under conditions of a cloudless atmo-
sphere. The point here is that, under conditions of radiative equilibrium, the.
inflow of heat from the sun is one of two available sources of heat. The second
source is the radiation of the earth proper B, in a cloudless atmosphere or the
nonradiative inflow ™q in the cloud in a cloudy atmosphere.

In order to determine the role of each of these factors, the quantities

1
Lo,
atmosphere are compared in Table V.5.1. In the Table the values Q (z) comguted
by Ye S.Kuznetsov (Bibl.3) are used, and it is assumed that o, = 9 x 10~
gm/m and that B, = 0.063 cal/cn® *min which corresponds to a temperature of 280°
in the interval Rl + Ry. Obviously, the insolation at a height of 1 km con- /162
stitutes 10% of the terrestrial radiation proper, then becoming equal to the ’

latter and finally exceeding it at the 5-km level. The same occurs with a shift
in height, in a cloudy atmosphere.

B
Q. (z) and -75— E,(7) which represent both heat sources in a cloudless

Figure V.5.1 also defines the role of the "selectivity™ of the absorption
spectrum of water vapor. Accounting for the selectivity or, more exactly, for
the ™transparent window!" (8 - 12u) leads to a strong drop in temperature on all
levels (cf. Curves 3 and &), especially at great heights.

It should be noted that the model of the water-vapor spectrum used in this
work is least suitable for solution of the problem discussed in this Chapter.
In view of the fact that here the heat exchange outside of cloudsis considered,
it is obviously necessary to account more accurately for the absorptlon spectrum
of a cloudless atmosphere. The calculation of Mselectivity"™ gives only a
quantitative idea on the variations in the thermal conditions introduced by thls
factor. |

The general conclusion to be drawn from Fig.V.5.1 is that a thick cloud
layer introduces a sharp change in the distribution of radiation temperature
with height. The atmosphere in its entirety becomes warmer in the presence of
a cloud, and a temperature constant with height is established between the lower
boundary of the cloud and the earth's surface. In computing the radiation tem-:
perature in the layer above the cloud, the selectivity of absorption of water
vapor and of insolation must necessarily be taken into consideration. With
respect to these factors, the scattering of long-wave radiation in the cloud can
be neglected, with an error of the order of 25%.

The problem posed in this Chapter was solved by us previously (Bibl.5)
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where we used a different, more complicated and less substantiated method for
the approximate calculation of the radiation leaving the cloud and also a dif-
ferent method for prescribing the nonradiative heat source. In both cases, we
obtain qualitatively similar relations between the temperature profiles in a ,
cloudless and a cloudy atmosphere. The equalization of temperature in the layer
below the cloud and the secondary role of scattering as compared with the radia-
tion of the cloud proper were likewise revealed there. In this former paper,
the temperature above the cloud was found to be less than on a corresponding
level without the presence of a cloud. This was due to the selection of the
nonradiative heat source.

Thus, the previous conclusions as to the highly important role played by
solar radiation in the development of the radiation temperature in daytime were
confirmed, and a greater importance of the selectivity than had previously been
believed was revealed. Complete disagreement with our previous results was
shown with respect to the role of scattering; our calculation (Bibl.5) revealed
an increase in the temperature above the clouds. This result (Bibl.5) is ap-
parently in error.
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CHAPTER VI [163

RADTATIVE COOLING OF CLOUDS

Section 1, Formulation of the Problem

The transfer of radiant energy in a cloud leads to its heating due to ab-
sorption of infrared solar radiation and to cooling as a result of radiation
from the boundaries. In this Chapter, the process of variation in temperature
in the upper part of the cloud layer under the influence of both factors is
studied., The lower part of the cloud is not considered since the basic features
of the thermal regime are here determined by interaction with the earth's
surface ard are described in Chapter V.

Qualitative considerations of radiative cooling of clouds, of haze, and fog
are discussed elsewhere (Bibl.l - 5). As early as 1931 Mal (Bibl.l) drew atten-
tion to the possibility of temperature inversions in the atmosphere due to radi-
ation from haze layers, In other papers (Bibl.2, 3) it is also shown that a
stratus cloud (haze, fog) having formed under the layer of temperature inver-~
sion itself actively affects the development and increase of the latter, Urfer.
(Bibl.L), in observing the temperature variation in persistent layers of fog
attributed this to radiative cooling, In Urfer's opinion, intensive radiation
from the upper boundary of a fog leads to the formation of an unstable cold '
belt, Thermal convection takes place, leading to reconstruction of the tempera-
ture profile, Investigations of radiation fogs led A,L.Dergach (Bibl.5) to the
following conclusion: The ground radiation fog produced below the layer of
temperature inversion exerts a direct influence on the process of evolution of
inversions; the fog intensifies the inversion both by lowering the minimum tem-
peratures at the base of the inversion and by slightly increasing the tempera-
ture at the upper boundary of the inversion,

All these qualitative considerations indicate the need for investigating
radiative cooling of cloud layers. In this Chapter, a quantitative evaluation
of the above process and of its extension into the atmosphere above the cloud
is attempted.

i Let us investigate a cloud layer which is infinite and uniform along the
horizontal., The temperature variations in this layer, taking the inflow of :
heat due to transfer of long-wave radiation from phase transformations of water
into consideration, are described by the equation [see eq.(I.2.40)]:

o .
CPP ag‘o =§‘[q..1p(.°)+ %;P‘;”I‘[IK(Z, Ty t)d@'—
' 1dh —L »D
3
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where )\, is the lower boundary of the interval of thermal radiation; ), is /164
its upper boundary; 1 is the latent heat of condensation., The remaining nota-~
tions retain their previous meaning.

The corresponding equation for the layer above the clouds has the form

A
= 68 2, 1) { 2w ({14 do — 4oxB, (o) ., (V1.1.2)

3 ¢

T

The superscript 1 applies to the characteristics of the atmosphere above
the clouds and the superscript O, to the characteristics of the cloud itself,

Equations (VI,1.1) and (VI.1.2) contain the unknowns T¢(°) (z, t),T(1)(z, t),
(9 (z, r, t), I} (z, r, t) and mst be supplemented by two transfer equations:

or®

€08 0 —— = (s, 2 B + o, 2 PV [BA(T) — IV (2, 1, 1)), (v1.1.3)
any
cos 0 5 = O, 2 p‘(:) [BA (T(l)) — ](A” (z, r, t)]. ‘ (VI.l.h)

Equations (VI.1.3) and (VI.1.L) neglect the scattering, which is indisputable
for the atmosphere above the clouds, Within the cloud, the scattering of long-
wave radiation is extensive and the scattering coefficient is of the same order
of magnitude as the absorption coefficient., Nevertheless, because of the com- -
plexity of its calculation, we will disregard here the scattering of long-wave
radiation within the cloud. The resultant errors are discussed in Sections 2

and 7.

If the quantities o,,}%, ey 0407 (2, t) and p{®)(j = 0, 1) are given, then
the system of equations {(VI.1.1) - (VI.1.L4) makes it possible to determine the
unknown temperature in both layers,

The boundary and initial conditions necessary for the solution are given
below.

Initial conditions:

Given are the quantities T¢1)(z, 0)(j = 0, 1)p{*’(z, 0) and p,(z, O).

Boundary conditions:

1. 1§°2(0, r, t) = I{¥) (0, r, t) (the height in each layer is counted from
the common boundary), ;

2, ¥ (2, r, t),__=0at 0>m/2

The conditions on the lower boundary of the cloud are not determined since
only optically dense clouds are considered in which radiation of the lower

layers does not reach the upper layers,
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The water vapor within the clouds is assumed to be saturated, as a result
of which each instant of time p{°’ (2, t) is treated as a known function of
temperature determined by Magnus! formula

at®

(0) . 15‘..10H‘T
piﬂ (z’ t) — 0.1 ‘-"—}Z'T ’ (vI.loS)
where = 6.1 mb is the saturation pressure of water vapor at (PC; a = 7.5;

b = 237°; R, = L60 m®/sec®.deg is the gas constant of water vapor; t° is the
temperature in °C; p{®) is expressed in gm/cm?.

Below, relatively narrow time intervals are treated over which the distri-
bution of moisture above the clouds is considered constant:

7 (2 1) = o) (2 0).
The liquid-water content of the cloud p,(z, 0) is also given at the initial /165

instant., Subsequent changes in the water content are controlled by the varia- .
tions in moisture and are determined by the formla ‘

Q(z, ) = Q(:;) (2,0) — Qw[T“’? (z, t)l.;'”:"; (VIoloé)g

where p,(T) is the density of the vapor saturating the volume at a temperature T.

Thus, in our formulation of the problem, the exchange of moisture of the
cloud with the ambient medium is disregarded, Variations in liquid-water con-
tent and in moisture occur only due to phase transformations of water, connected
with the radiative temperature variation.

Section 2, Simplifications Introduced

The solution of the system of equations (VI.1.1) - (VI.l.L) was carried
out in other papers (Bibl.6 ~ 9) with simplifying assumptions as to the absorp-
tion spectra of water vapor and of droplet water and also with neglecting the
scattering of long-wave radiation in the cloud, Below, we give some justifica-.
tions for the simplification introduced. :

2.1 Schematization of the Spectrum of Water Vapor

We will describe the spectrum of water vapor (see Chapter I, Sect.5) by
three absorption coefficients:

a1 = 0.2 em*fg, az = 4 em¥g, as = 10 cm?q.
The coefficients o,, oy, and oy apply to the sum total of individual segments
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of all absorption bands of water vapor. Integrals from Planck'!s functions along
the same spectrum intervals are presented in Fig.I.5.6 and in eq,(I.5.11).

In the present investigation, we are fully justified to use the indicated
spectrum model since, in the rather complex problem involved here, a detailed
consideration of the true structure of the water-vapor spectrum is quite im-
possible, In fact, this may not even be necessary, Thus, absorption of water
vapor in the cloud can be neglected, The layer above the cloud is here con-
sidered principally from the viewpoint of its effect on the cloud, Therefore, 5
the main problem is to define, in the spectrum of the atmosphere above the
clouds, regions with weak, strong, and average absorption, which interact dif-
ferently with the radiation of the cloud. The selected spectrum model is well
suited for this purpose.

2.2 Neglect of the Scattering

As mentioned above, scattering of long-wave radiation in the cloud is dis-
regarded in this Chapter although, according to the data in Chapter I, Sect.l, j
the coefficients of scattering and of absorption of droplet water in the long-
wave region of the spectrum are equal in order of magnitude, '

The problem of radiative heat exchange, taking scattering into account s, is:
quite difficult and has never been solved in full. Below in Section 7 and in
Chapters II and V, attempts have been made to account for scattering or, more
accurately, to circumvent the difficulties connected with this. The computa~-.
tions made there give some idea as to the nature of the effect of the scatter-
ing process on the thermal regime and indicate the subordinate but still con-
siderable influence of this factor,

Ye.S.Kuznetsov (Bibl.10) gave a detailed treatment of the role of scattered
radiation in the heat exchange, for the simplest case of radiation equilibrium
of a gray atmosphere and of a spherical scattering indicatrix., He also gave /166
approximate computations for slightly elongated indicatrices, The principal
conclusions of this paper (Bibl.10) are presented below,

In the case of radiation equilibrium in a gray atmosphere, the following
relation [see eq.(I.2.39)] exists:

-
B (x) = ES‘I (v, r)de. (VI.2.1)
Hence eq.(I.3.23) can be presented in the form:

cos 0 %%:.—-a—ifgl (v, r) [(1 —F) + ky (r, )l do’ — I (x, 1), (vi.2.2)

where ]
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For v = 1, we obtain the equation
ar 1
o080 5 =gz \ldo — 1, (VI.2.3)

which differs from the transfer equation in the problem of pure scattering [see
eq.(I.3.1)] only by the determination of the optical thickness ¢ which now de-
perds not only on the scattering coefficient & but also on the absorption co-
efficient %,

Thus, the question as to the role of scattering reduces to the problem of
the dependence on the solution of the integral equation which is equivalent to
eq.(VI.2.3) on any variation in =¥,

If the value of the function B(7) for an atmosphere with an optical thick-
ness 7* + Ar* is designated by B(r), then we obtain the following integral
g_%ua;tions [see eq.(I.2.45)] for the determination of the functions B(t) and
B(r):

<*

B(x) = -‘%B (0) Eq (v) +—§—§ B (t) E; (|v—t])adt, (VI.2.h)i
1:+AT‘
B@®=—4BOE®+5 | BOE(t—t])d (VI.2.5
Hence, °

' *+AT*
B@)—B(t) =4 S B(t)Ey (|v—t])dt +

<*

+';' S (B (@) —B@®) E,([v—t))dt.

(V1.2.6)

Because the kernel and the three terms of the last equation are positive,
its solution, i.e., B(r) - B(r), will be positive in the interval (0, r*).
Above the level T = 7%, the function B(r) decreases on decreasing temperature T
with height and may reach values smaller than B(#),

In another paper (Bibl.10), it is shown that if
At* >1* + 2, (VI.2.7)
the following inequality will exist in each case:

B(r* + Av*) < B(z*). (VI.2.8)
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The inequation (VI.2.7) is valid in clouds since here o is about equal to ¢ and
is large; in addition this inequality has deliberately been made too large. /167

Thus, scattering increases the temperature in the lower layers of the
cloud and apparently reduces it in the upper.

Ye.S.Kuznetsov, in Schwarzschild's approximation, calculated the tempera-
ture at the lower (T,) and at the upper (T*) boundaries of a scattering and '
absorbing layer under conditions of radiative equilibrium, for a scattering
indicatrix of the form y(o) =1 + g cos w and for g = 0, 1, The results of the
computation are presented in Table VI,2.1. :

TABLE VI.2.1

g=0 g=£ §

X |
T, T* T, ! - T :

0.00 293.8 161.3 293.8 161.3 |
0.5 296.4 138.5 296.1 143.7 g
0.75 298.2 117.8 297.9 124.6 !
0.90 299.3 94.4 298.9 101.7

It follows from the Table that the scattering of radiant energy somewhat
increases the temperature in the lower parts of the layer and substantially
reduces it at the upper boundary, The asymmetry of the indicatrix (in the weak
form in which it is considered here) somewhat compensates this effect. The
results of our computations given in Section 7 of this Chapter confirm Ye,S.
Kuznetsov's conclusion and also prove the temperature drop due to scattering of
radiant energy in the upper part of the cloud.

Therefore, the estimates of radiative cooling obtained below, neglecting
the scattering of long-wave radiation refer only to the lower boundary of this
phenomenon.

1

2,3 Neglect of Water Vapor in the Cloud and Averaging the
Absorption Coefficient of Water

If scattering is neglected, the inflow of heat per unit volume of the
cloud, i.e.,, the first term on the right-hand side of expression (VI.1.l) will
have the following form [see eq.(I.2.44)]: ‘i
Ay )
Q ()= S (@, 5 + @, 2] {811,1 (0, r) esectr dg L Slz.k(’fo, ryesec® et dgp 4
A z, - : . ’

42 (B Ey (|t —t|)dt— 4By (T)} dh. (VL.2.9)

0
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Let us evaluate the possible errors in the quantity Q(r) due to neglecting
the water vapor in the cloud ;a:nd also due to replacing the spectral absorption
coefficient of droplet water ¢,y by its mean value ¢,. The evaluation was made
for sufficiently dense clouds (1, = 10) and in the vicinity of the upper
boundary of the cloud(r = T, ).

Under these conditions, it can be assumed that, in eq.(VI.2.9), we have
1,(0, r) = 0, since the effect of the lower boundary does not extend to the
upper layers of the cloud,

It is natural to present the radiation incident on the upper boundary of
the cloud from the outside in the following form [see for instance eq.(V.1.17)]:

I (vo.7) = sec 'S.l- B{ (1) exo0tde, i

] f

after which the expression Q(r) is transformed into /168
A To :
Q (=213 + .l {S By (t) Ey (|t —t])dt —
Ay [

%t

— 2B, (T) + \ BY (¢) Ey (v + ).

o

(VI.2.10)

i

The calculation on the basis of eq.(VI.2,10) was made for t = 7, under the
assumption that :

B (t) = const
for the quantities @, taken from Table I.5.2 and for the quantities o, calcu-
lated by means of the formula (see Chapter I):

G a = Kaaby
4ap !
at a = 6,26y and for the quantities KQ taken from Table I.L4.6.

The computational data showed that, at an error not exceeding 1%, it can
be assumed that

Ew.l +;n,l = &‘p').
Substituting o,y by the arithmetic mean of this quantity o, in the interval
(4 - 204) leads to an error of the order of 30%., If, however, the arithmetic
mean of the absorption coefficient of water in the narrow interval of wave-

lengths (8 - 12,) is taken as ¢,, the error due to this assumption

Op, a == const = a,
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will not exceed 10%. The value of o, will then be equal to about 1000 cm®/gm.,
The reduction in the error in the last case is explained by the major role
played by the (8 - 124) interval in forming the value of Q(r) at T = 75, Out-
side of this interval, the absorption of water vapor is extensive as a result

of which the radiation of the cloud is compensated by back-radiation of the
atmosphere above the cloud, For the same reason, in calculating Q(7), the water
vapor could be neglected with respect to water, without loss of accuracy.

Another point of importance is the differing role played by water vapor in
the solution of various problems, Thus, in Chapter IV it was shown that the
attenuation factor in a cloud is largely determined by the absorption properties
of water vapor. As a consequence, the role of the latter is substantial in
computing the albedo and the radiation fluxes (we recall the increase in albedo
in the transparent interval)., In this Section, however, we show that, in com-
puting the influx of radiation in a cloud, water vapor can be neglected,

Section 3. Method of Solution

Let us make some transformations of eqs.(VI.1.l) and (VI.1l.2). First, on
the basis of the above considerations, we replace oy and o,y by their mean
values, Then, with the aid of egs.(VI.1.3) and (VI.1.4), we express the radia-
tion intensity I{!)(z, r, t)(j = 0, 1) by the corresponding temperatures
™3 (z, t) [see eq.(I.3.7)] and substitute the obtained expressions in egs.
(VI.1.1) and (VI.1.2). Finally, we introduce the optical thickness of the
cloud:

2z

t=0{pnEd (V1.3.1)
¢ i
and the mass of the vertical vapor column in the atmosphere above the cloud [;62

m= Spg» (2) dz. ’ (V1.3.2)
[ .

With regard to the last relations, the following statements must be made:

a) The optical thickness of the entire cloud is equal to
-
To=¢uspv(z) dz" ) (VIOBOB)

where H is the thickness of the cloud layer.

b) The mass of water vapor in the entire layer below the cloud is
m =\ el @azn (VI.3.4)
0 i
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c) The quantity v depends on the time,

After transformation, eqs.(VI.1,1) and (VI.1.2) reduce to the form

" :
Cop T = 20, p, (2, 1) {2 x SB?’ & 0 E, (@t + v dt +

i=1

o 35 o :
HBOCDE (t—vpat — 289 (w0}~ 1 B2, (V1.3.5)
; .
Cor L = 2mp® (z, 1) {Z % B‘°’ & 0E &+ a,m)a;+
o
Z m,
+ 2 o B‘”(é,t)E (@:|m —E)dE — 2 ) o BY m,t};
3 \ Im — %)) §1 (m, 1) (VI.3.6)
where E, (x) is Gold's function [see Chapter I, eq.(I.2.43)].
We then introduce the dimensionless quantities
st 7@ _ W B — PBi o, = _Pe
it = e y T T° ’ i Bo ) PD Po'. L
and the dimensionless parameters
c éTo C,pTo Lp ‘
) __ . P _ w, 0
¢ = Zn“v:v.otoBo ;= 2%, Py, o 1By b= 2na,t,Bop, o - (V1.3.7)

If we assume T = 273°, then B, = 0.146 cal/cm®min = —- T§; p,o = L9 X
x 10°® gn/cma = Pu(To)-

We will assume that the air density p is constant, which will not lead to
appreciable errors in our problem since we are cons:uiering a layer which is not
great in height, Let us assume p = 1.3 X 10°° gm/em®; C, = 0.2/ cal/gmedeg, |
For the remaining characteristic quantlties we will assume the following values:
;to = 2, hr, o, = 1100 cm®/gm, @, = 1 cm®/gm; py, = 0.5 X 107° gm/cm®,

The calculation by means of egs.(VI.3.7), in this case, will yield /170
aw = 0.417, a® = 13.1, b = 0.398.10°%,

In calculating b, it is assumed that L = 590 cal/gm.

In the transition to dimensionless quantltles, egs.(VI.3.5) and (VI.3.6)
are replaced by

140



Yl — -
a(()o)_@_]_‘_—g)_: T —_— 4 — (VI.B.S)
at ot .

(v1.3.9)

Loo
0.95]

90 -
S 5275 285
7oK

Fig.VI.3.1 Effective T and Dimensionless T
Temperatures as a Function of T

The amounts R °’(r,t)and R}’ (+,t) represent the radiative 1nflow of heat.‘;

— - — - "ll —— -
RO =po(r, D{ Do { BOE D E (@t + 1)t +

i=1

+ B9 @, B B (v — B1)at — 289 (r, D}, (V1.3.10)
0
R (m, ) = o8 (m, 1) {3 e B DE €+ am & +)
. |
+3 4 { B @ D5, @uim— £ a — 23 = 50 o} 34D
i=1 ° i=1

In what follows, the vinculum denoting dimensionless quantities is omitted.

It is easy to obtain the algorithm of an approximate solution of egs,

(vI.3.8) and (VI.3.9). If both sides of these equations are integrated (under
the assumption that a solution exists) with respect to time within the limits
from the instant t,_, to the instant t,, then eq.(VI.3.8) will yield

-
a® [T (¢, t;) — TO (1, tyy)] = g R (¢, t)dt —

tk-y

— b [ (, ) — P (v, ty)] (VI.3.12)
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and a corresponding expression from (VI.3.9). Let us assume that AT

iy

\ RO 1) &t = ARD (% 1)

te-y (v1.3.13)
i = 17 0

and introduce the notation

T, ) =79, 1) + ,,:'o, P (v, 2). (VI.3.14)

Since p,_is a known function of the temperature [see eq.(VI.1.5)], it is
obvious that T also represents a known function of the temperature, whose curve
is plotted in Fig.VI.3.1 (the straight line in the diagram represents T =

T
)e
TO
If the phase transformation of water is neglected in the equation Qf heat
inflow, then T(Tt, t) will coincide with the temperature. In our case, T(+, t)

plays the role of the effective temperature which includes corrections for
moisture condensation.

The final formula, taking egs.(VI.3.13) and (VI.3.1ll) into consideration,
can be written in the form of f

T (v, t) _F (t, te) + %R(D) (, tea), (VI.3.15)
TW (T, ty) = 7w (t, th-y) + ‘;A(IL)R(I) (z, tl—l)‘ (VI o3 16)

If T(r, t,_,) and T} (7, t _.) are known, then it is possible to compute
RO (t,_,) from eqs.(VI.3.10) and (VI,3.11), to read off T(t,.,) from the
graph, then to compute T{!)(t,) and T(t, ) and finally, with the aid of the same
graph, to determine T(t, ).

,Section Le A Few Laws

_ Some qualitative idea as to the temperature variations in a cloud with
time can be obtained by examining R(®) (T, t).

In Section 5, it will be shown that, in the case of sufficiently dense
clouds (71, = 10), it can be assumed with a large degree of accuracy, for any
O<7T1 <1, that

S B, t) E, (|t —1t]|)dt =B (v, ) [2 — Ey (1) — Ex (%o —“1)1, (VI.L.1)
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In this case, eq.(VI.3.10) will yield

3 m '
ROt =p (0 Da { BO G0 Bk +o db—

i=] 0

— B (%) [E, (v) + Ey (vo — r)]} . | (VI 4.2)

Since the optical thickness of a cloud in the long-wave region of the spectrum
is great (of the order of several tens) it follows that, in the depth of the
cloud layer, R(°®) (1, t) = 0 (see also Chapters IV and V).

At the upper boundary, i.e., at v = 0, we obtain

. 3 m, ’
RO (1, 8) =p, (1, 1) {g w§ BY @, 0 E, (@t + vdt — BO (1) E, (r)} . i (VI.L.3)

From this it follows that fluctuations in the liquid-water content of the /172
cloud as a whole or variations in its geometric dimensions or its optical thick-
ness r, will not lead to changes in the radiation conditions at the level « if
the water content p (1, t) remains constant. In the level under consideration,
the radiative influx of heat is proportional to the liquid-water content. '

: In eq.(VI.4.3), the first term on the right-hand side represents back-
radiation in the atmosphere above the clouds., The second term expresses the
radiation balance of the cloud proper, i.e., the difference between the amount
of absorbed and radiated energy per unit volume of the cloud.

The expression (VI.4.3) shows that, due to its natural radiation balance,
the upper layer of the cloud can only be cooled,

The influence of the layer above the cloud is dependent on the temperature
distribution in this layer,

Let
BV, 1) = BP(0,1) + Eb; (1) :
Then, s m ,
2 ol BEGE ) E, () &8 = |
i=] 0 o 'v

=S OO U—E @ +5 0 [f— wE ) — B ]},

where 7, is the optical thicknesses of the atmosphere above the cloud, corre-
sponding to the three selected segments of the spectrum ('r1 = q,m). ’

The radiative heat influx in this case is expressed in the form (for sim-
plicity, we assume T = 0):
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RO0,0)=p, 0, ) {JBY 0, 0)[1 —Es (v +

i=1

+ v b 4 — i Es (1) — Ey (1)] — BO (0, )} .
§1 ‘|2 T (- o} (VI.Lolk)

If the temperature in the layer above the cloud remains constant with
height (b‘ = 0) and equal to the temperature in the upper part of the cloud,
then eq.(VI.4.L) will yield '

R®©,1) = —p, (0, 1) 23‘, B (0, 1) E, (v). (VI.L.5)

In this case, the cloud undergoes cooling, which proceeds less rapidly the
higher the water vapor content above it, i.e.,, the greater r,, At an average

1
water vapor content in the atmosphere above the cloud of(m = 1.5 gm/cm®) we
have

Ei(v) =0 (=23

and
R®(0,1) = — p,(0, 1) B (0, t) E, (x,). (VI.L.6)
From this it follows that the region of small absorption coefficients plays
the principal role in radiation, |

The corresponding expression for a Mgray" atmosphere (a1 = const =1 cma/gm;
T, = T = me] Cma/gn = 1.5) has the form

RQuy (0, 1) =— py(0, )BI(O, t)Ey(x*). (VI.L7)

It is easy to calculate R{) <« R{®), It is thus very important to take /173
the selective nature of water-vapor absorption into consideration.

We will now study the case of a temperature varying with height in the
layer above the clouds, It is not difficult to verify that

i

—g—-nE.(n)-ﬁ—Egr.»o. | (VI.L.8)

Therefore, if the temperature above the cloud decreases with height (b, < 0),

then according to eq.(VI.A.L) the cooling of the cloud will be even more ex—
tensive than in the above case of b, = O.

For a temperature inversion above
the cloud, the condition of the sign reversal R(°) assumes the following form
[for T (0, t) = T,(0, t)]:
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T3 A —TEs (v) — Ey ()] > E (v) B (0, 1).
2 2 ‘ ] 25 @ B0 (VI.1.9)

3
It can be approximately assumed that b; = 0.3 b where b = ¥ b,. Then,
1=1
considering that E,(r,) = O (i = 2, 3), the condition (VI.L.9) can be replaced
by

036 {5 — TiEx () — Es (m)} > Ea () B (0, 1) (V1.4.10)

Calculation on the basis of eq.(VI.4.10) at 7, = 0.3 yields b > 0.3,
which corresponds to a temperature inversion of the order of 10 - 12° in a
layer of 0.1 km thickness above the cloud,

The above statement on eq.(VI.L.3) means that the value of R(°)(+, t) de-
creases extremely rapidly with increasing ¢ because of the decrease in E, (r)
(3 =13 2). For v = 5 which corresponds to about 100 m from the top of the
cloud, we have R(®) (v, t) = 0O so that the radiative cooling does not extend into
the deeper layers., ‘

The results of computations with eqs.(VI.3.15) and (VI.3.16), in the
simplest case of a constant initial temperature along the height of the cloud
and above it, are given below, These data confirm the obtained qualitative
laws and, to some extent, extend them and make them more accurate.

Let there exist, at the initial instant t,,
Tz, to) = TO (z, to) = To, |
i.e., ‘
i
[

B (z, ty) = B® (z,' te) = Bi,. i

The relations (VI.3.15) and (VI.3.16), together with eqs,(VI.3.10) and (vi.3.11),
then will yield

T(,t)) =T (v, t) — ;ﬁ,—i Po (T, to) {By,eEs (ym;+7) + BoEy (To — 1)},

(VI.p.11)

® _ ) At ) % : |

T (m, t;) = TV (m, to) — —@ Pw (m) qui"’Ez [a; (my — m)]. (VI.L.12)
Specifically, at T = 0, m = O the following relations exist:

~ ~ A ' :

T(0,t) =T (0, 1) —po (0, to) g BroEs (@, my), (VI.L.13)

‘ ' ® o AL o ' ‘

T 0, 1) =T (0, to) — o’ (0) gy 5= Bro Bz (o, ma). (VI.h.14),
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It is obvious from egs,(VI.A,11) and (VI.4.12) that cooling in the cloud
does not extend to a great depth: E,(1, - 7) = 0 in the upper layer, while
Ea(arlm; + 1) rapidly decreases with increasing r. Conversely, above the cloud
the cooling extends to great heights since E,(w |m; - m|) varies slowly.

It is also evident that the cooling within the clouds proceeds at greater
speed than above the cloud, because of the relation ‘

For the same reason, the absolute value of cooling at the upper boundary of the
cloud is considerably greater than directly above it,

t, \t t,rat
- Upper clead
boundery
! 2
T

Fig.VI.4.1 Qualitative Nature of the Temperature Profile
in the Vicinity of the Upper Cloud Boundary

We encounter here the phenomenon of a discontinuity of radiation tempera-
tures on the interface of two media with different optical properties, It is
known [see (Bibl.10)] that the problem of radiative transfer of heat is charac-
terized by a temperature discontinuity at the boundary in the case of continu-
ous intensity. In the case of constant temperature at the initial moment, this
discontinuity appears in analytical form. ‘

Thus, if the following equality exists at the initial instant:

TO (z,0) = T(z,0) = cons‘t:

then, after a certain, not excessively long, interval of time a temperature ;
profile is established whose qualitative features are represented by Curve 2
in Fig.VI.A.l. i

The obtained temperature discontinuity must be considered as a mathematical
idealization of the real effect of formation of a sharp temperature inversion
at the upper boundary of a stratus cloud, since the concept of the boundary, in;
itself, is an idealization of the transitional layer between the cloud and the j
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medium above the cloud. Theoretical considerations permit to determine the
thickness of the inversion AT = T(1)(0, t) - T¢°) (0, t) as a function of time

but do not give a quantitative estimate on the thickness of the inversion
layer,

Judging by the fact that the cooling extends only slightly into the depth
of the cloud (to within 50 - 100 m), it can be assumed only that the thickness
of this layer is small - of the same order as the thickness of the interface
between the cloud and the medium above the cloud.

It should be mentioned that this temperature inversion is the result of
radiative cooling of the cloud, In fact, the same phenomenon is involved in a .

study of radiative temperature inversion or radiative cooling and both these
terms can be used in the same sense,

To conclude our statements, we give the computational results on radiative
cooling for the case that

I (z, to) =TWm (Z, to) = 2730.

Assuming that p,(z, t,) = 0.5 gn/m®, eq.(VI.4.11) will furnish the distri-
bution of temperature, moisture, and liquid-water content with depth in the /175
cloud at the instant t, = t; + At(At = 0.5 hr), presented in Table VI.L.l. Here
the initial temperature above the cloud is retained, !

TABLE VI.,.1
|
(0) (0) 0y (0) 2
ey’ (z. 1) ey (2. )] #0) oy (2.t} o (2, 1), (O
z, km T(o) {z, il) wglm' ! vg 44"1 ! (z, ;) = km T(ﬁ) (z. 1)) wyhi ! vg/ml (l. 1) ‘
(] 269.2 3.72 1.19 | 272.3 }10.055] 272.9 4.88 003 | 233.0
~0.08f 272.2| 465 | 0.26 |272.8 [0.073) 272.9| 4.8 | 0.03 | 273.0
0.036f 272.8 4.84 0.07 | 272.95 [|0.091] 273.0 4 94 0.0 273.0

Table VI.4.1 shows that, during the first half-hour, the upper part of the
cloud cools rapidly. No doubt, this is a manifestation of the small absorption
coefficients (a1 = 0,2 cm®/gm) participating in the process of radiant heat ex-
change, For comparison purposes, the temperature T(°)(z, t, ), calculated from
eq.(VI.L.11) for a rougher spectrum model in accordance with which the interval
(4 - LOu) is divided into two parts with the absorption coefficients @, =
=1 cm®/gm and o, = 10 cm®/gm, is given in Colum 5 of Table VI,A.l.

The calculations of the temperature on the upper boundary of the cloud
T(®) (0, t) at successive instants of time, shown in the first row of Table
VI.4.2, characterizes the time rate of cooling.
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TABLE VI.L.2

fy

ty
1790, 1), deg .. ....... 273
2. p(‘" ©,0), gaa® - - . ... .. 49
(0) 0, 1), , /e . ... ..., 0.5
4. T“’) ©, ), des (A1=0254 ar )| 273
5. TV, 1), deg . ....... 273
6. T“”(o, 1), " deg (st veriable)
L () S 273

The Table shows that the rate of cooling decreases rapidly.
tion of the above quantity R'°’ (T,

269.2
3.72

1.19
269.6

269.2

l ts - i ty
267.0 | 266.1 | 265.3 | 265.0
3.20] 3.00{ 2.81| 2.78
171 1.91| 2.40f 2.15.
267.5 | 288.3 | 265.6 !
2116 | — |2108
262.0

An investiga-
t) yields an explanation for this phenomenon:

As a result of intensive cooling, at the initial instant, a strong temperature
inversion takes place in the boundary layer, which prevents further cooling ofv

the cloud.

: The time interval At, in our calculation, is equal to 0.5 hr.
strate the reliability of the computation, the values of T (o) (O t) at the same
0.25 hr are given in the fourth row of
The fifth row shows the values of T (0, t) for the case of a
Here the cooling of the cloud

instants of time and
Table VI.4.2.

"gray® atmosphere - T, . (0, t)(o, =

is considerably less.

computed for At =

1 cu’ /gm).

To demon-

i
|

I
}
i
t
i

The second and third rows of Table VI.,.2 give the time rate of change in
moisture in the upper part of the cloud and the corresponding variations in its
Clouds of the stratus type, in accordance with the data .
given in Table I. 1 6, are characterized by liquid-water contents of the order
It is obvious that, for stratus clouds, the presence of
liquid water in amounts of the order of 1.5 - 2.5 gm/m® is not typical. There~
fore, we assume in our calculations that all the condensed water either drops
out of the cloud or is redistributed so that the geometric dimensions of the /176
-cloud and its optical thickness increase while the liquid-water content on each
As shown above, the radiation

liquid-water content.

of 0.2 - 0.3 m, n’ .

‘level in the upper layer remains as before.
‘balance on a given level is retained in this case.

If all the condensed

‘moisture is retained in the upper part of the cloud, its radiatlve cooling w11l

increase strongly.

-given in the sixth row of Table VI.j.2.

A corresponding example for variations in T'°

Y(0, t) is

As distinguished from the cloud itself, the layer above the cloud cools

extremely slowly.

Calculations show that, for the selective model of the

1
i

water-vapor spectrum, this layer will cool by O. ° during the first two hours.i

Further cooling will proceed at about the same rate.

Therefore, a temperature

“inversion of the order of 7 - & is established in the boundary layer, with a
thickness of nearly 100 m, approximately two hours after the initial instant,
-characterized by a temperature which is constant with height in the cloud and

1,8



above it.

In conclusion, we will discuss the effect of moisture condensation on_the
temperature of the cloud. Using the straight line T instead of the curve T in
the graph of Fig.Vl.3.l and neglecting condensation, we can compute the tempera-
ture for each step At, which will naturally be lower than the previous tempera-
ture. Corrections for condensation AT‘°’ (0, t) for the four time steps (At =

= 0.5 hr) are given in Table VI.,.3 where, in computing AT“”(O, ty ), we used%

§
{
i

TABLE VI.L.3

Uk l t l ts l 1 1,

ATO (0. 1) I 1.9 l 2.75 l 2.85 3

i

the "true" temperature, i.e., the temperature obtained when taking the conden-
sation in the (k-1)-th step into consideration. The Table shows that, due to
‘the heat of condensation liberated during radiative cooling of the cloud, the
temperature at the given instant increases by about 2 - 3°.

[

Section 5. Calculation of the Radiative Heat Influx

In determining the values of T'!)(z, t,) by means of egs.(VI.3.15) and
(VI.3.16), the most difficult point is calculating the radiative heat influx
R4 (z, ty-1) from the given temperature, moisture, and liquid-water content at
the instant tx.;.

First, we will discuss the calculation of R'°’ (0, t) since a determination
of the radiation temperature of the upper portion of the cloud layer is of the .
greatest interest. ;

For 7 = O,

3 m,

ROQ, 1) =po 0, 0) {3 o { BE 6 O E (@B + .

4 238 4
1==] B

+{B9E 0 E, © dt — 2890, n}. ()

|
We will consider the quantity

x0.9- (G502

°

(VI.5.2)

149



Let [122

(VI.5.3)

Then, ]
(0 : ;

X 0,0 =80, 1 — B (t)] + 9| _[§ — %0 Exlsd) — £ (5],

or )
| — Bo — _o(m_ dB® | )
X0,0=B°0.0 1 —E, ol [t + 5805 | s

where |

T}—To.ngfg)—E:(fo)‘ |
(P (TG) = 1 — Ez (Tg) .

It is easy to demonstrate that ¢(0) = 0

s > 0 for any t,,t!_i:’n; ? (t.‘)":’..,”i_“

Here .
, ’ ii
' El (1".) = 0, !

D]

P(r) =

if 5 > 3.

Therefore, for all real clouds, even for very thin ones, there exists the ?
relation

X (0, 1) = B® (0, t){1+ 1__ 489 | }
-

2BO©, 1) d&r ? (V1.5.5)
We recall that |
dB f dBdT sT dB 4
w =g as POD=3g Fg=mT
;Hence - ‘
X (, 1) = B™ ' 2 dT® ’ :,
( ) B (Oat) {1 + :t: va(O, t) dz O (VI.S.é)'
For oy = 1000 em®/gm, py = 0.5 gm/m®, T(O, t) = 273° we obtain !
‘ — plo ' ar (
X 0, =B 0,1 {1 +0.0001557] 1, (VI.5.7)
0) f
where is expressed in deg/km. !
5 % a1t
The expression (VI.5.7) shows that, for any values of z all the
2=0

;way to gradients of the order of 100 deg/km it can be practically assumed that
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X (0) = B9 (0,1) | (vx.s.a)z

for clouds with a liquid-water content of py 2 0.1 gn/m®.

/178
, Since no large temperature gradients occur inside the cloud it can, with |
even greater justification, be assumed that

X(r,0)= QB“"(E 0 Ey(JT—El)dE = BYx, 1) {2 —Ea(x) - - — (v1.5.9)§
R [ |

E
The physical meaning of egs.(VI.5.8) and (VI.5.9) becomes obvious when ‘
examining the sum of the second and third terms in the braces of eq.(VI.5.l):

Te

Z(x, 1) = SB“" & O EEVE 28" (v, ) — X (x, 1) — 28" (1, 1). | (VI.5. 10)

As shown above, Z(T, t) represents the radiation balance of the cloud proper
(difference between inflow and outflow of energy), neglecting radiation coming |
from the outside. The equality (VI.5.10) together with eg.(VI.5. 8) will give

Z(U' l) = — B (07 t)v ' (VI 5 ll)

and, at a sufficient depth inside the cloud, eq.(VI.5.9) will yield o

1

Z(tt) - — B (1, ) (£ () ¢ (=1 = 0. (VI.5.12)

The last two expressions show that, with respect to long-wave radiation, an
optically dense cloud is a black body and its inner layers are in a state of
thermodynamic equilibrium (within the frame of radiant heat exchange).

The conclusion as to the inner layers agrees with the results of Chapter IV.
It was shown there that radiation from the boundaries of the cloud is subject
to Kirchhoff's law and, strictly speaking, is not equal to the radiation of a }
black body. In our case, the cloud behaved like a black body because radiation.
was neglected.s We recall that the difference from black-body radiation, accord+
ing to the data in Chapter IV, is about 10%4 everywhere except in the transparent
interval (8 - 12u) where it is equal to 20%. It makes sense to take such a ;
difference into consideration when determining the spectral radiative fluxes. |
In this Chapter, only the radiative influx of heat is of interest and the error
of 10 - 20% in its determination is negligible. At any rate, this error is less
than the errors due to other factors. -

Next, we will derive the quantity

3 m,

Y (U, t) - \ % 5 B“’(&, ) K, (‘\11§) dg' \ (VI-BOIB)n

i l
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which determines the influx of energy to the cloud from layers above the cloud.
Generally speaking, Y(O, t) varies in time with variations in the tem;:erature
and moisture in the layer above the cloud. However, in computing R (o, t) for
time intervals which are not too eat 1t ca.n be considered that Y(O t) is not
a tlme—dependent quantlty since T and p., vary much slower than T'°’ and

p°’ . Table VI.5.1 gives the values of Y(O, t, ) for five time steps (At = ;
= 0.5 hr) accounting for the changes in 77 and '’ in each step according to.
the data of example 1. ‘

If, in computing R‘°’ (0, t, ), the quantlty Y(0, ty) from Table VI.5.1 is |
replaced by a constant value of Y(O, t;) = 0.69816 we will obtain the tempera~ |
ture values of T°?(0, t ) given in Table VI.5.2 along with Mexact™ values of
T°) (0, t, ) computed from Y(O, ty).

TABLE VI.5.1 /179
k ;
1 ‘ 2 I 3 | 11 ] ‘
YO, 4) | 069816 | 069786 I 0.69654 | 0.69515 | 0.69522 3
L} &
|
TABLE VI.5.2 ]
k
: ’ 2 ] : ; § ’ 5
0, 1) 2613 | 2:8.2 ! 253.7 233.9 l 252.8
70, ty) 261.3 ] 238.2 l 255.7 253.9 | 227

Obviously, the assumption Y(O, t) = const ensures a greater accuracy and
is justified at least for time intervals of the order of three hours.

; The following examples show tha.t, in the computation with eq.(VI. 5.13), t
the quantities T’ (z, 0) and p'{*’(z, 0) must be known only in the layers of a
thickness of 1 - 3 km above the upper boundary of the cloud. J

We will select here the layer of a thickness of z above the clouds. To
this layer, there correspopds a mass of water vapor mye. 1

We will present Y(O) in the form of
2 m, 3 m,

YO =Ya {B'®F @+ D a (BO® B @ |

or i 0 i—1 m, ‘l
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a ~ |
),7 (O) = Z {]}1 li —_ If2 ((lim")] ‘{’ [{JEz (aimo) - Ea (aiml)l} 1 g

i=y

(VI.5.14)

where }‘3’, and B; are mean values of the function B{*’ (€) on the intervals (0, m)
and (m, m ), respectively. If the temperature decreases with height, then ‘

B> B (V1.5.15)
TABLE VI.5.3 {
T ) - . ]
S e R
i aj, cm'/g m,, giem®
040 i) 68 0.87 {.9
a ! n ‘ b a I h I ) b
1 0.2 | 02500 0250 0.340 | 0.150 | 0.390 ] 0.100 | 0.430 | 0.070
2 4 0,936 | 0.063 ] 0.985| 0.044] 0.994( 0.001 | 0.997 | 0.003
3 10 6997 ] 003! omel o 1 0 { 0
In Table VI.5.3, the values of the quantities a =1 = E (o;my) and /180

b = Fp(oym) - Bp(oym ) are given forzg =1, 2, 3, L km; i =1, 2, 3; &y =

0, 2, 4, 10 cm®/gm. In the computations it was assumed that

") ek, k=045 kmt,  m, = \ o (2) dz.
5

The selected distribution of moisture with height corresponds approxi-
mately to Hann's formula.

The computation showed that for i =1, 2, 3 it is actually sufficient to
integrate over § in eq.(VI.5.13) with respect to the interval (0, my ) which ;
‘corresponds to a layer about 4 km in thickness above the cloud. Here we dis- |
regarded the inequality (VI.5.15) and also the fact that B, and Ba are smaller :
than Bs. ‘

Table VI.5., gives the actual upper limit of integration in eq.(VI.5.13)
for the real distribution of temperature and moisture with height. In each |
example, we give the individual terms (i = 1, 2, 3) in the expression (VI.5.13)!
and their sums AY(O) for the atmosphere layers Az shown in the first column;

8 are the errors in the quantity Y(O) due to neglecting, in eq.(VI.5.13), the
thickness of the atmosphere higher than 1 km and higher than 3 km above the
upper boundary of the cloud.
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. Thus, in determining Y(0O) the integration in eq.(VI.5.13) must be carried
out only in the interval (0, my) where m corresponds to the height 1 - 3 km
above the cloud. The same statement also holds for Y(T).

TABLE VI.5., ;
i
i” T - i - t
Az, xm AY () 8, % x
1 2 1 2 3 AY® | 8%
. Ezsaple 1 Example ?
0—1 0.080 {0,082 {0,532 | 0.694( 7.0 0.108 | 0,106 ] 0.556 | 0.770 | 1.1
1—3 0.012 | 0,042 | 0.020 { 0.044 | U.88 | 0.010 | 0 0 0.010 | 0.24
3—10 | 0.004 1 0.0021]0 0006 — Jlowew]o 0 0009 | —
Example 3 . Example &
0—1 | 0.134 | 0.110 | 0.582 | 0.826 | 2.5 || 0.041 | 0.092 | 0.559 | 0.692 | 5.0
-3 0.007 10 0 0.007 | 1,18 {1 0.013 10,008 | 0.008 | 0.029 | 0.98
3—10 |0.002 |0 0 0.002]| — 0,005 0.00210 0,007 | — ‘

* In examples 1, 2, and 3, the experimental data are given only for |
heights of z = 1 km, Above this level, a linear temperature distribution ¥
is assumed and p$'’ (z) is assigned according to Hann's formula.

The expression for the radiative heat influx in the cloud R‘°’ (7, t) taking
the above evaluations and eq.(VI.5.12) into consideration, can then be written

as
B th—pu (3, 1) {}ja § BV (&, to) Ey (i + |
+ 1)dt — B (1, tl)‘[lhz (ro) + Ey (1o — 1)) (VI.5.16)
Making use of the identity |
BY (5 1) = B (10— B (0,1) + BV (0, 1,),
1t is easy to reduce eq.(VI.5.16) to the form of [_Lﬁ

: ki

R (x, 1) = py(1, 1) { o \ 1B (&, to) — B O, to) Ey (@t + v) dE + |

i—1 |

3
3

se

|

~- i“B(i” 0, ty) E, (v) — E, (agmy + 1)} — B™ (v, 9 E, (v) -+ Eqy(ty— t)]} ‘\ ;
=t I(VI.5.17)

|
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A calculation on the basis of eg.(VI.5.17) is more accurate than based
on eq.(VI.5.16) because of the reduction in the order of magnitude of the inte-
gral term whose appronmate computatlon is the principal source of errorse.
Furthermore, El(aqg) = - ®at T =0, and the accuracy of calculation is con-
siderably increased by equating the factor at E; (2 §) under the integral sign
to zero.

Limitation of the calculation to the layer (0O, my) in the determination
of Y(7) leads to the possibility of a further simplification in eql(VI e5.17).

In fact, in the interval (0, my) it is possible to approximate AB{'’ (E) by the i
linear function ‘
ABV(®) = B (5, 1) — B O, 1) = biE (vI. 5.18)§

or to assume W . ‘
AB{" (£) = AB;’ = const (VI.5.19);»

and to determine A‘ﬁﬁl’ for instance as the arithmetic mean of the values of
AB; (€) in the interval (0, my ). The selection of the method of approximation
is suggested by the nature of the experimental data.

Table VI.5.5 gives the errors in computing the quantity

~ e t
Y(0) = Yo § BV @) Fy @)t (VI.5.20)
making use of eq.(VI.5.18) (6, ) and eq.(VI.5.19) (83) in the same four examples.
Here the values obtained by numerical integration with eq.(VI.5.20) are taken
to be the exact values of Y(O).

TAELE VI.5.5
Example
1 2 3 [}
6 i
8, % 2.0 5.8 5.3 1. i ’
5:. "Z 2.8 38 2.3 1._9 !

The expression of R'°’ (0, t) for the condition (VI.5.19), which is recom- |
mended for approximate estimates of the value of radiative cooling of the cloud
at its upper boundary, is given below:

? )
R0, 8) = po (0, t){}_} ABi[1 — Ey (umo)] + | |
=1 : i
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F B0, t) — B (0, 0] — X} B0, to) B, (amy).
Pl 2 (%) (VI.5.21)

For computations by means of eq.(VI.5.21), the following factors must be Z 182
known:

1) Liquid-water content of the upper part of the cloud. ;
2) Distribution of moisture above the cloud at the initial instant j
in a layer of 1 - 3 km thickness, for deriving my from the formula 3

z,
my == S plV (z) dz;
s .

where the height is counted from the top of the cloud upward.
3) Distribution of temperature in the same layer at the same time for
deriving

ABY () = BY(E, t) — BP0, 1) | z

and for determining the mean value of AB;.
L) The function B, (T) for the determination of B{'’(E, to) and B{°’
(0, t); graphs of these functions are given in Chapter I, Sect.5.
5) Tables of functions E,(x) (see Bibliography at end of Chapter I). '

i

In conclusion we note the following:

l. If a temperature inversion, concentrated in a narrow layer, exists at
the upper boundary of the cloud, then it is logical, in calculations based on
eq.(VI.5.21) or on a similar relation, to take B'*’(0, to ) as the value of this
function for temperatures at the upper boundary of the inversion layer and to
compute B'°’ (0, to) from the temperature at its base.

2. From all above computations (see also Sect.)), it follows that the most
. l H

suitable time step in the computation of T'°’(z, t, ) is 0.5 hr (At = -—h-é——).
The step width should be increased for the layer above the cloud.
‘ 3. The approximate computational formulas (VI.5.17) and (VI.5.18) given :
above are correct only for sufficiently dense clouds. In the case of optically’
thin clouds the relations (VI.5.8) or (VI.5.9) cannot be used and X(7) is de-
termined by numerical integration.

Le From physical considerations and based on the assumption as to the tlme—-
invariance of Y(7, t), the calculations of radiative cooling with the above

approximate formula must be limited to time intervals of the order of 3 - 6 hrs.

5. The assumption of Y(T, t) = (1) leads to a separation of the problem |
of determining the temperature within the cloud from the corresponding problem
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for the layer above the cloud. Thus, the simultaneous computation with egs.
(vI.3.15) and (VI.3.16) must be replaced by calculation with eq.(VI.3.15) and
corresponding approximate expressions. Specifically, it is possible to deter-
mine directly the value of inversion

= 100, ) — 1 ©, 1) | (VI.5.22)

with the aid of egs.(VI.3.15) and (VI.5.17) or eqs.(VI.3.15) and (VI.5.21).

6. After determlnlng R‘°)(T ty ) from eq.(VI.5.17) and T°? (1, t.) from
eq.(VI.3.15), pl®) (T, t ) is computed by means of Magnus! formula [eq.(VI 1. 5)]
and then py(T, t, ) by means of eq.(VI.l.6).

Section 6. Comparison with Observation

The above-described methodology was applied to calculating the radiative
cooling of clouds under real atmospheric conditions. Data obtained with aero-
stats and radiosondes by the Central Aerological Observatory were used.

§

TABLE VI.6.1

i l 5.2 ! 5.7 l 7.4 9.4 ‘ 2.1

t, "G 1215
u, % |64

—9.2
66

—13.2 | —25.2] —39.2] —59.8
6o ‘ 60 60

Four examples of stratus cloudiness were investigated*,

FExample 1. Table VI.6.1l gives the distribution of temperature and of [lgj
relative humidity u with height, according to radiosonde data obtained over
21 hours on 22 July 1957 in the vicinity of Moscow.

Visual observations from the earthts surface attest to the presence, at the
tlme of sounding, of altocumulus and cirrus cloudiness of force 8%%,

E* The sounding data were selected for these cases and given to us by scientists
of the Central Institute of Forecasts, Ye.I.Gogoleva and M.I.Gorodova, to whom
;the author expresses his sincere appreciation.

3% The low relative humidity shown in Table VI.6.1 does not agree with the
Vcloudlness. Apparently the radiosonde happened to enter a break between clouds.
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At 2 hr 40 m on 23 July 1957, a thunderstorm developed. An attempt was
made to estimate the possible radiative cooling of the clouds under these con~ °
ditions and to determine the extent to which this cooling could explain the
occurrence of the observed thunderstorm. The synoptic analysis made by M.I.
Gorodova did not reveal other reasons for the storm at this time.

It is obvious that the data presented in Table VI.6.l are insufficient for:

a quantitative analysis: the thickness of the cloud, the level of its p051tion,
and its liquid-water content are unknown factors.

H
°C : i
. |

- 1 i 1 A
M
2

9
km

»

Fig.VI.6.1 Temperature Profile for 22 July 1957 at 21:00

Figure VI.6.1, plotted on the basis of data from Table VI.6.l, gives a
layer of L.6 < z < 5,2 km with a reduced temperature gradient.

Let us assume that an Ac cloud is located below thls layer, that its th:Lck-
ness is 0.6 km, and its liquid-water content 0.3 gm/em’. Under these condi-
tions and with the temperature and moisture distributions presented in Table
VI.6.1, the radiative cooling and the variations in liquid-water content were
computed; the results are shovm in Table VI.6.2. Here k characterizes the K
instant ty, so that &% = t% -1 = 0.5 hr; the height z in each layer was counted
from the general boundary towards the depth of the layer. ;

, Within 4 hours (eight time steps), the temperature of the uppermost part
‘'of the clouds was reduced by 14.5 . This led to the laws, discussed in Sec-
‘tion 4: a) the time rate of cooling decreases rapidly; b) the cooling extends |
only negligibly into the depth of the cloud; c) the atmosphere above the cloud
cools at a considerably slower rate than the cloud itself.

Thus, within four hours, a hyperadiabatic gradient was established in a
narrow layer at the upper boundary of the cloud and the water content increased
by a factor of 8. It is possible that, under certain conditions, such an un-
stable state may result in a thunderstorm.

The basic factors determining such extensive cooling in the considered [184,
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case are the large temperature gradient and the small optical thickness (m =
= 0., gm/em’ )of the atmosphere above the cloud (see below). It must be re-
membered that the calculation was made almost without real information on the

TABLE VI.6.2

k

N N W R W G

Temperature Variation in the Cloud
252.0 | 251.4

0 | 265.5 | 261.3 | 258.2 | 255.7 | 253.9 | 252.7 , 2500
60 265.9 | 265.7 | 265.5 | 265.3 | 265.1 264.9 | 264.7 | 264.6 | 264.5
120 266.3 | 266.3 | 266.3 | 266.3 | 266.3 | 266.3 | 266.2 | 266.2 | 266

| i |
Variation in Water Content 5 38
5| 232 | 235 | =
2 1,57 | 1.85 | 244 2'2'.) 6 | 0.58 | 0.63
0 0.3 ) 412 0 0.44 0.48 0.52 0.5 ‘39 0.32
60 0.3 0.35 0.4 . 03 0.3 0.32 0.32 .
0.3 0.3 0.3 .
120 | 0310 |
- - waourawution in Above-Cloud Layer
0» 265.5 | 265.4 | 265.2 | 265.0 | 264.8 | 264.6 — — —
300 265.1 265.0 | 264.9 | 264.0 | 264.8 | 264.7 — — _ :
700 264.0 | 264.0 | 263.9 | 263.9 | 263.8 | 263.7 — C - _— ;

observed cloudiness, which means that the computational results are only tenta—‘
tive. Apparently, the value of liguid-water content, namely, 0.3 gm/m" used in

the computation was too large. The data collected in Chapter I indicate that
the average liquid-water content of Ac clouds is equal to about 0.1 - 0.2 gm/m3
With such water content, the cooling at a given instant will be about 1.5 - 3. O
times smaller, .

‘ We will discuss three examples based on data obtained in aerostatic sound-!
ings.

A As opposed to the first example, where a large Ac cloud located quite
high in the atmosphere was considered, we will here deal with more or less de-
veloped low-lying St clouds. In each case data are given on the temperature
and moisture distribution with height and some information (largely descriptive
on the cloudiness. Data on the liquid-water content of the cloud are lacking. |
The soundings were repeated every three hours so that it was possible to compare
the theoretical calculations with observational data.

Example 2. This example is based on temperature-distribution data obtalneﬂ
in three soundings (Curves I, II, III) and on moisture distribution obtained in
the first sounding (broken curve) presented in Fig.VI.6.2. A Stratus region
with an upper boundary at a height of 500 m is clearly expressed in the curves §
of the first and the remaining times of sounding. The positions of the upper
boundary at each sounding time are indicated by crosses. In Curve 11, the
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upper cross corresponds to the boundary at the ascent and the lower, to the
'poundary at the descent. This example represents a typical case of a radiative
inversion above a stratus cloud. The magnitude of the temperature inversion

800

H,m
Fig.VI.6.2 Tanperature Distribution with Height, 10 March 1962
I- 00,7 - 02.3 hr; II - 03.8 - 05.3 hr; III - 06.7 - 08.4 hr;
(the moisture distribution within 00.7 hr is shown as a
broken line) ,

(up to 5° at the third sounding) and the thickness of its layer (nearly 100 m)
agree well with the conclusions in Section L.
TABLE VI.6.3

TIME RATE OF CHANGE OF TEMPERATURE AT THE UPPER
BOUNDARY OF THE CLOUD

o9 /m’ )
0 l 1 l 2 l 3 l & 5 6 7 8 a

01 262.6 | 261.8 | 261.3 | 260.9 | 260.7 | 260.5 | 260.3 | 2601 | 260.0 | 259.9
0.2 262.6 | 261.6 | 260.9 | 260.5 | 2601 | 259.8 § 259.5 | 259.3 | 259.2 | 259.14
0.3 262.6 | 261.3 | 260.1 ] 260.1 | 259.6 | 259.% | 259.2 | 259 0 | 258 1 | 258.7

The development of the inversion during the period between the first and
third soundings was computed with the above formula a.nd was then compared with
observations. The results of the computations of Tt )(0 ty ) are presented in
Table VI.6.3. "
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The experimental material contained no information on the liquid-water
content of the investigated cloud. The calculations were made for three values
of water content: py:0.1, 0.2, and 0.3 gm/m®.

In Fig.VI.6.3, Curve 1 represents the time rate of change of the minimum
temperature. If the level on which the temperature assumes its lowest value is

t,°C
~10
.
2
3
i
- ] 1 1 1
15 ! 2 3 Y
h, hours

Fig.VI.6.3 Time Rate of Change of Minimum Temperature
1 - Actual data; 2, 3, and 4 - Calculation for
py = 0.1, 0.2, and 0.3 gm/m®

-13F G Nee
g 200 400 500 800
z, ni

FigeVI.6.l, Temperature Distribution with Height,
10 - 11 March 1956
1 - 1900 - 2009 hr; 2 - 22.1 - 2309 hr; 3 - 01.3 - 0302 hr;
L - OLe2 - 05.7 hr; the distribution of moisture in 9 hrs
on 10 March 1956 is shown by the broken line

considered to coincide with the upper bounda.ry of the cloud, which approximately
corresponds to the observational data, 11; 1s log1cal to compare the measured
minimum temperatures with the value of T t, Curves 2, 3, and / repre-
sent the results of calculating the quantity ¢ (0, t,) for a mean liquid-
water content of the clouds equal to 0.1, 0.2, and 0.3 gm/m®, respectively.
The calculated cooling was obtained as more intensive than the true cooling :
which, to some extent, is due to the fact that we neglected turbulent mixing in
our formulatlon of the problem (see Sect.9). The lack of measured data on
1 (2, to) and of pt*’(z, to) above the level of z = 1 km also prevents satis-
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factory agreement of calculated and measured temperatures.

It is interesting to compare the values of cooling in the first and second’

examples. At the same liquid-water content py = 0.3 gn/ma, the cloud in the

first example was cooled by 13.5° within three hours and in the second, it was

cooled by A

* z is counted from the earth's surface; z = 0.25 km is the upper

TABLE VI.6.l

VARIATION IN TEMPERATURE

K
*, don

v 2 4 6 8 10
(U} 264 .1 264.1 263.9 263.8 263.7 263.7
0.2 264.0 263.8 263.4 262.9 262.6 262.2
0.25 264.0 263.0 262 .1 261.2 260.3 259.6

boundary of the haze.

The considerably less extensive cooling in the second example is'
explained by the presence, at the initial instant, of a temperature inversion |
above the cloud (as distinguished from the gradient of €° /km in the first ex- |
ample) and of a large optical thickness of the atmosphere above the cloud (m; =
= 1.4 gm/caf in the second example and m; = O.4 gm/cm® in the first).

TABLE VI.6.5
k
z, km
[ i 2 3 4 5
: 0.1 0.05 0.05 0.07 0.09 0.11 0.13 0.13
f 0.2 0.05 0.07 0.09 0.15 0.19 0.24 0.29
0.25 0.05 0.15 0.27 0.29 0.43 0.5 0.59
Example 3. This example is based on the temperature and moisture distri- !

bution plotted in FigoVIoéll.po

curve).

boundary at a height of 250 m was observed.
became denser and turned into fog.

of the haze at the initial instant was assumed to be equal to 0.05 gm/ma, for
which reason an accumulation of liquid moisture up to 0.2 gm/m’ was taken into

The temperature is given for four observation
times (solid curves), while the moisture is given for one reading (broken
At the initial instant, a ground layer of wet haze with an upper
In the next readings, the haze

/186

In the computation, the liquid-water content
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account. The increase in liquid-water content above a value of 0.2 gm/cm’ was |

disregarded in computing the temperature, i.e., it was assumed that all the
excess water was redistributed (see Sect.l,). The results of the calculation
) (z, ty) and py(z, tx ) are presented in Tables VI.6., and VI.6.5. The time
rate of change in minimum temperature is plotted in Fig.VI.6.5.

Example 4. The data of the soundings on 9 March in 21.5 - 23.1 hr /187

are used as the initial instant. The corresponding temperature and dew-point

tt
~-10}

-,9 1 ] 1 i -

1 2 J u
b, hrs

i

Fig.Vl.6.5 Time Rate of Change in Minimum Temperature
1 - Actual data; 2 - Computed data

Fig.VI.6.6 Temperature Distribution with Height,
9 March 1965
1~ In 21.5 hr (measured); 2 - In 2, hr computed for
the initial temperature distribution; (Curve 1) and
dew-point temperature (broken curve);
3 - In 24 hrs (measured)

distribution ts is plotted in Fig.VI.6.6 (Curve 1 and broken line, respectively).
No cloudiness was as yet observed at this time. After three hours,the sounding
showed the presence of Stratus cloud and of a clearly expressed temperature
inversion, as plotted in Fig.VI.6.6 (Curve 2).

An attempt was made to determine whether cloud formation, in this case,
could have been due to radiation processes alone. For this, the calculation
method had to be changed. Instead of a two-layer medium, a one-layer medium was
used as basis and the radiative cooling was computed by means of eq.(VI.3.16)
where R(z, t, ) was determined from the relation [see eq.(I.2.45)]:
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3
Rz, t) = 2 [0te,iPr 4 % Pl {ﬁi 0, tx) Es (v5) +
i=1

<
f

+\ Bit ) Ey (1 — &) dt — 2B, (v, ta);
S D=t (7 b (VI.6.1)

Here, ,
T - g [a:pe (B) + 2P (B)] dE.

At the initial instant py = O, the radiative cooling is determined only by
the water vapor and therefore is small. However, in computing the liquid-water
content at each stage on the basis of eq.(VI.l.6), already the second step shows
an accumulation of liquid-water content near the point t° = ta, after which the
rate of cooling increases. The considerable acceleration of the process in this
case is partly due to the sharp reduction in moisture above the level t° = ta
as shown in Fig.VI.6.6.

The theoretical temperature distribution three hours after the initial
instant is represented by Curve 3 in Fig.Vl1.6.6. The diagram shows that the
extent and thickness of the inversion layer, formed three hours after the
initial instant, agrees well with the observational data. The locus of the ;
inversion is shifted by almost 200 m with respect to the true location, a fact
which can be explained by the inaccuracy in the experimental determination of
the layer of zero moisture deficit. The cooling of the entire subinversion /188
layer, which actually occurred, is not confirmed by theory for the reasons
given in Sections 4 and 10. Within three hours, a water content averaging
0.26 gm/m® accumulated in the 100 m layer.

The last example is of methodological interest, because of the fact that
we did not introduce the cloud boundary with all the attendant difficulties in
formulating the boundary conditions. Here, the thickness of the inversion layer
can be determined accurately and was found to be 50 m, which confirms the above
estimates.

Section 7. The Role of Reflection

As a result of the scattering process, part of the radiation incident on
the cloud from the outside is reflected back into the atmosphere above the cloud
while part of the ascending radiation within the cloud is reflected back into
its depth. Therefore, there is some justification for replacing the scattering
of long-wave radiation by its reflection from the boundary of the cloud. The
formulation of the problem remains as before, except that the conditions on the
interface between the cloud and the medium above the cloud assume the form
(see Chapter I, Sect.3):

F2® (0) := AW F(@ (0) |- (1 — AW) Fo (0), (VI.7.1)
Fi0 (0) == A0 Fo (0) + (1 — AO)F @ (0), (VI.7.2)
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where F}‘)(O) are the fluxes of ascending (j = 1) and descending (j = 2) radia-
tion at the boundary of the cloud, contributed by the medium above the cloud

(i = 1) and by the cloud itself (i = 0); A'*’ is the albedo at the boundary,
contributed by the corresponding medium.

The new boundary conditions lead to some change in the expression for the
radiation balance in each of the media. Specifically, the radiation balance of
the cloud R'®’ (T, t) with the additional condition

I (0,r) = const = -1 FP(0), (v1.7.3)2

where I(°’(0, r) is the intensity of descending radiation on the upper boundary
of the cloud, is expressed in the form of

RY (v, t) = p, (1, 1) {2.4“” E. (v) S BY (&, t) E,y (k) dE -

} BO @, 0 £, (@b dE +

1]

3
+2(1 — AN Ey(v) Yo
i=]1

+ §B‘°’ & E (|v—t|)dt — 2B (x, t)}.

X (VI.7.4)
At A = O, we have o
3 m, .
R0 =p@ {260 Dl B¢ EehE+
+ B @ 0 Bt —8))ds — 289 (v, )} (V1.7.5)

The last expression differs from eq.(VI.B.lO) by the first term on the
right-hand side, which is due to replacing the condition of equality of the in-
tensities at the boundary by the more general condition of equality of the
fluxes which is assumed in this Section.

It is difficult to define the advantage of one of the indicated conditions
over the other. Strictly speaking, the equality of the intensities makes /189
sense only in the case of radiative equilibrium. The condition of equality of -
the fluxes follows directly from the expression of the heat balance at the in- -
terface of two media (see Chapter I, Sect.2) and is therefore more general.
However, even this condition must be supplemented by the assumption (VI.7.3),
which strongly limits the generality of the obtained results. Incidentally, it
is not difficult to calculate that, on substitution of eq.(VI.3.10) by eg.
(VI.7.5), the magnitude of radiative cooling changes negligibly, increasing
by 10 ~ 15%.

Returning to the relation (VI.7.4), it will be noted that the radiation
balance at the given levels varies linearly with the albedo A, Thus, this
also holds for the degree of radiative cooling Nﬁo) which, according to eq.
(VI.3.15), is represented in the form of
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ATR (1) = T® (v, t) — T® (1, ) = eRO (v, t_,) (VI.7.6) |

(the latter expression is written without taking account of the heat of conden-
sation). ;

Figure VI.7.1 gives the correlation of AT (0) with A‘*’ in the following

1
cases: A'©) =AY (Curve 1); A'® = —Z— A (Curve 2);4(°) = - A

{Curve 3); A'°®? = O (Curve 4); the case A®) = a1Y) = 0 i5 shown by the broken |
line.

art
“4.0

-2,0

Fig.VI1.7.1 ) Cooling as a Function of Albedo

The quantity AT, °%0)isdetermined by means of eq.(VI.7.6) at T = O and the
initial data

TO (z, 1) = TW (g, to) = const.‘g

The time steP At is assumed to be equal to 0.5 hr. The different variants
of the ratio of A'®? to A'Y) are due to the absence of scattering in the long-
wave radiation above the cloud, which makes it logical to assume

A® < AW,

However, in our opinion, A®) ig only slightly smaller than A (even the sign
of the equality makes sense), in view of the fact that the optical thickness of
the cloud is considerable and the reflection of the fluxes F3'’(0) and F°’ (o)
to an almost equal degree is due to scattering in the upper part of the cloud.

In Chapter IV, estimates were made on the spectral albedo of stratus
clouds in accordance with which, at oy = 0.2 gn/m® and t = Oo, the albedo will
be A'Y < 10% ilf A <8 and A = 12u. In the spectral interval (8 < A < 12u),
the value of A'!) is of the order of 20%. Figure VI.7.l shows that, for such
values of the albedo, the corrections to be made for cooling due to reflection
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are small (except for the non-real case A = 0) everywhere except for the
interval (8 - 12u). At (8 < A < 12u), in the closest to real case

%A”’<A‘°’<Am

the correction due to reflection may be as high as 20 - 304. This result repre-
sents some argument in favor of the assumption made in Section 2 as to the
relatively unimportant influence of long-wave radiation scattering in clouds on
the temperature of such clouds.

It is also of interest that, in acconance with Fig.VI.7.1l, the cooling
generally increases with an increase in A 1), i.e., with an increase in re- /190
flection of the radiation arriving at the cloud from the outside. This consid-
eration is in itself trivial; however, as shown in Fig.VI.7.1l, if A = Akl), ’
i.e., if an approximately equal part of the radiation of the cloud proper is
reflected back into its inner layer, the role played of this radiation will be-
come extensive and the cooling will decrease with increasing A'!’.

Section 8. Radiative Cooling by Day

In studying the literature on interaction between heating of clouds by
absorption of solar radiation and their cooling by natural radiation, contra-
dictions in the statements by various authors will be encountered. For instance
in one paper (Bibl.3), it is shown that during the day clouds are heated by -
insolation; in another paper (Bibl.ll) it is asserted that this heating can be
neglected with respect to radiative cooling; in still another report (Bibl.1l2)
it is assumed that heating and cooling due to the two above factors compensate
each other to some extent; finally, in one paper (Bibl.13) arguments are derived
in favor of cooling in the upper layers of clouds and heating in the deeper
layers, under daytime conditions. Not one of these authors gave a quantitative
analysis of both aspects of the process under consideration; at most, they cal-
culated one of the two factors involved here and more often stayed within the
limits of qualitative considerations.

In order to solve this problem completely, the equation of heat exchange
in the cloud, the right-hand side of eq.(VI.l.l) must be supplemented by a temm
that represents the influx of heat due to absorption of infrared solar radia-
tion. This term has the form of (see Chapter III)

A,

Q()f” (Z, t) == S [dl.'). P+ G Pg”l S I(A",(z, r, ‘)‘d@d‘, (VIoSol)

ko
Where XO = Oo?i‘t, )\1 = 205"'.
However, in view of the linearity of eq.(VI.1l.1) and the fact that 0{°’(z,
t) is independent of temperature, the influence of heating and cooling can also

be treated separately. Below, we present the results of Chapter III where the
heating was investigated and the results of this Chapter where the cooling is
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analyzed.

First, let us recall that radiative cooling rapidly decreases with time as
the above-cloud inversion develops. In the s1mplest model which we discussed
in Section 4 [initial condltlonS' T (2, to) = T (2 2, to) = const] the rate
of cooling dropped from & /hr to Z€ero, w1th1n three hours. The same result is
obtained in using the actual observational data presented in Section 6. In
examples 1 and 2, the cooling, within four hours from the initial instant, also
decreased almost to zero.

For the same time intervals around noon, the insolation does not change
quite so extensively. This makes it obvious that its influence will differ in
different stages of development of the cloud and of the above-cloud inversion.
In other words, the absorption does not depend on the temperature distribution
within the cloud and above it. Cooling is largely determined by temperature.
Therefore, the interaction of both factors, while maintaining pv, 0w, and C, ‘
may yield substantially different results on change in the temperature profile.

Thus, according to data in Chapter III, a low cloud as a whole, depending
on its thickness, absorbs 0.015 - 0.03 cal/cm *min at a zenith distance of the
sun of { = 60° and a water content of py = 0.2 gm/m « At C = d), other condi-'
tions being equal, the absorption is 0.09 - 0.13 cal/cm®*min. From the compu-
tations performed in Section h it follows that as a consequence of radiation,
such a cloud loses 0.05 cal/cm® *min in the first half hour after the initial :
instant, characterized by a temperature which is constant with height and a /191
liquid-water content of oy = 0.25 gn/n®. By averaging the rate of cooling for -
three hours we_ obtaln, for the same condition, a radiation equal to a value
of 0.02 cal/cnm® *min.

In Example 3 of Section 6, the radiation in the first half hour 1s
0.04 cal/cn®*min and, after three hours, becomes equal to 0.02 cal/cm® *min,
According to data in Section é (Example 1), a high cloud loses 0.26 cal/cm®*min
in the first half hour; gccordlng to the average rate of cooling, such a cloud
will cool by 0.15 cal/cm” *min within three hours. Finally, after three hours
this cloud loses only 0.025 cal/cm *min. According to data in Chapter III,
such a cloud receives 0.1/ cal/cm emin of solar energy at ¢ = CP.

We see that, as a result of interaction of absorption and radiation, the
cloud taken as a whole can be both cooled and heated. Prior to the development
of inversion, the cloud will generally cool followed later by heating. Clouds
of the middle layer (Example 1) will be cooled at least at the initial instants
of time; low clouds (Example 3) may start heating immediately. When the sun is
at the zenith, heating may predominate.

However, it does not make much sense to consider the cloud "as a wholef,

The following examples show how radiative heating and cooling are distri-
buted with cloud depth. In Fig.Vl.8.1, Curve 1l represents the heat influx

°’(2) per unit volume of the cloud, accordlng to the data in Chapter 11,
while Curves 2 - I, represent the heat loss in the case of T° to) = TV (a,
to ) in accordance with the data of Examples 1 and 3, respectlvely. Curves 2 - L
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correspond to the rate of cooling in the first hour after the initial instant.

The following two facts are clearly revealed: 1) The uppermost part of the
cloud of 50 - 100 m thickness cools much more intensively than it heats; 2)
heating penetrates into the cloud considerably deeper than does cooling. There-
fore, the narrow upper layer of the cloud, during the day, will be in about the
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Fig.VI.8.1 Distribution of Heating (1) and of Cooling
(2-1) in a Cloud
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Fig.V1.8.2 Temperature Variation with Height under
Night (Solid Curve) and Daytime (Broken
Curve) Conditions

same condition with respect to radiative cooling as at night. Below this layer
there is a considerably wider one which is heated by absorption of solar radia-

tion. However, the rate of heating here is considerably less than that of cool-
ing in the upper part of the cloud.

Figure VI.8.2 gives an example AT (2, ty) computed for T°(z, to) =
= T (3, to) = 273° (solid line - night conditions, broken line - daytime con-
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ditions). At a distance of 85 m from the upper boundary of the cloud, cooling
is replaced by heating which extends to a depth greater than 300 m. Maximum /192
heating occurs at z = 200 m and reaches 0.5 /hr.

The above comparisons reveal the basic differences of the processes of
heating of a cloud by absorption of solar radiation and of its cooling due to
long-wave radiation:

1) Heating varies much more slowly with time than does cooling.

2) Cooling of the uppermost part of the cloud reaches a higher order of
magnitude than heating if the liquid-water content is the same.

3) Heating varies more smoothly along the vertical than does cooling and
penetrates into greater depths of the cloud.

l,) Heating does not depend on the temperature distribution in the upper
part of the cloud and above it, whereas cooling decidedly depends on these
quantities.

5) Heating is to a much greater extent dependent on the moisture of the
cloud than is cooling.

The possibility of neglecting water vapor in the case of cooling is con-
sidered in Section 2 of this Chapter. The role of moisture in heating is dis-
cussed in Chapter I, Sect.) where it is shown that in the near-infrared region
of the spectrum the absorptivity of water vapor is greater than that of water.

In conclusion, we would like to mention that V.L.Gayevskiy (Bibl.2l), in
measuring fluxes of long-wave radiation in a cloudy atmosphere, also came to
the conclusion that the radiative temperature change in the upper part of a
cloud is about the same in daytime and at night: At night the rate of cooling
is equal to 9.3°/day, and in the daytime it is 7.5 /day.

Section 9. Allowance for Turbulent Mixing

Radiative cooling of clouds takes place in a narrow boundary layer. It
can therefore be expected that even weak turbulent mixing will substantially
diminish the effect of cooling.

Simultaneous accounting for turbulent and radiative heat exchange consid-

erably complicates the problem so that, in this Section, we will confine our-
selves to an approximate solution for small time intervals.

9.1 Experimental Data

An even greater difficulty is created by the lack of data on the nature of
turbulent exchange in clouds. Experimental determinations of the characteris- -
tics of turbulence in a free atmosphere are in their very beginnings. In addi-
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tion, there is no instrumentation suitable for such investigations in clouds*.
Therefore, the few available data are principally qualitative in nature and are
based on investigations of indirect characteristics or else represent the re-
sults of not fully substantiated computations.

With the available data (Bibl.3, 14 - 17), the following facts can be es-
tablished: 1) In passing from the cloud into the medium above the cloud, turbu-
lent mixing decays; 2) more extensive turbulent exchange takes place in clouds
than in a cloudless atmosphere.
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Fig.Vl1.9.1 Estimating the Richardson Number in
the Atmosphere
1 - Friction layer; 2 - Below the tropopause; 3 - Tropo-
pause; L - Clouds; 5 - Below the clouds; 6 - Above the
clouds; 7 - '"Pure® troposphere

Figure V1I.9.1l, taken from the paper by L.T.Matveyev and V.S.Kozharin
(Bibl.14), gives the ratio of the difference yq — Y to the vertical gradient /193

of wind velocity under various conditions. This ratio determines the

dz
Richardson number, egual to
Ta—7T ‘
("“)' ’ (V1.9.1)

dz

i—-£
BI“T

which, in turn, characterizes the rate of turbulent mixing. The smaller the

# In clouds the buffeting of aircraft can be measured. The turbulence in a
given frequency range is estimated quantitatively. However, it is not known
whether this same spectral interval can be considered responsible for the turbu-
lent exchange of heat and moisture.
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value of Ry the stronger will be the turbulent exchange. Figure VI.9.1 shows
that turbulence is more developed within the cloud than below it and is much
greater than in the layer above the cloud.

An analysis of the experimental data presented in Fig.VI.9.1l induced the
authors of another paper (Bibl.l,) to compute values of Ry at different levels.
Their results are given in Table VI.9.l.

TABLE VI.9.1
Height, = Ri
Type of  No.of [T U, ' 1 ‘
- Clowd ' Mases 3:::-r B:::r E’E :E (A::::;
‘dery | dery [0 "O
St 14 | 40| 9m|o.6|1.0] 19.7
Sc 16 | 1400| 1800(1.411.4] 62.7
Ns 12 850| 1900|1.811.6f 10.3
As—Aci 10 | 3100{ 3700|3.8{3.1] 35.5
As 16 | 3050] 3750{4.914.3| 13.9 '

TABLE VI.9.2

kg, mt/sec

Type
of Cold Half | Wara Half
Cload| of Year | of Year

St |21.2; 2.8 [28.2; 25.0
Sc [20.9; 11-1
Ns|19.3; 43.0

Readings of the accelerometer carried aboard an aircraft flying within and,
above a cloud (Bibl.3) are given in Fige.VI.9.2. The diagram shows that the
originally nearly continuous buffeting of the aircraft within the cloud rapidly
reduced to zero above the cloud, in a layer of about 100 m thickness where a
temperature inversion existed in this particular case.

The nature of the available data does not permit to establish where the
decay of turbulent exchange begins = in the upper part of the cloud or above it.
From general considerations, it appears that the decay of turbulence takes place
in the inversion layer which often encompasses also the upper part of the cloud
(see Sect.10).
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Some estimates of the coefficients of turbulent exchange k, in stratus /194
cloudiness are given in the paper by M.P.Churinova (Bibl.17). Table VI.9.2
shows the values of k; based on data by this author (Bibl.17). The data in
Table VI.9.2 represent calculations of the quantities k¢ with D.L.Laykhtman's
formula:

2
kl N ] 2

1

‘d:‘lg[(ug—u)z—{— vI)2 (VI.902)

where 4 is the Coriolis parameter; c is a constant, y; is the velocity of the
geostrophic wind; u and v are the horizontal wind velocity components. The
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Fig.,VI.9.2 Record of Buffeting of an Aircraft within
and above a Cloud

computation was made on the basis of a large amount of data collected in air-
craft and pilot-balloon measurements. The Table shows that the value of kg
fluctuates within the limits

3 < ki < 43 m¥sec,

being in the majority of cases of the order of 20 - 25 m°/sec.

9.2 Method of Solution

Let there be in the cloud, along with radiative influx of heat, also turbu-
lent mixing which is characterized by a constant kinematic exchange factor k.
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For the sake of simplicity, the heat influx due to phase transformations of
water will be disregarded in this Section. This quantity can be computed by
the same method as that given in Section 3. Above the cloud, as before, we will
consider only radiant heat exchange on the basis of considerations given above.

The equation of the problem, after the same transformations as in Section 3
and with the same notations, will assume the following form#: '

TV (2 ¢ 94 a7\ ' »
et LR @+ 0O (V1.9.3)

TV (2, 1) ] ) '
T == RV, 0. (VI.9.4)

Equation (VI.9.3) contains the constant D° = k, -E%- where zo is the /195
Zo ,
dimension of length. If k, = 10* em®/sec, to = 1 day, and z, = 1 km, then D® =
= 0.086; R°’ (z, t) and R‘*’ (2, t) are the sum total of the terms of the equa-
tion that characterize the radiative heat influx in the cloud and above the
cloud, respectively.

A simultaneous accounting of both turbulent and radiative heat exchange for
selective absorption of water vapor introduces basic difficulties in the formu-:
lation of the marginal conditions of the investigated problem. First of all,
the number of conditions must be increased by two as compared with the purely
radiative case because of the presence of the last term in eq.(VI.9.3). In
investigating the upper layers of sufficiently dense clouds, we will consider
them as semi-infinite. In this case, it is sufficient to assign only one addi-
tional condition which can naturally be taken as the equality of temperatures
at the interface between the cloud and the medium above the cloud.

* The equation of the heat balance reduces to eq.(VI.9.3) if the turbulent heat
flow q is presented in the form of

- aT
q——cpf‘k‘ 5z °
A physically more substantiated relation is

g =—Cpok, 2,

)

where © is the potential temperature. It is known that —Sg- = =
Z

Ya is the adiabatic temperature gradient. It is therefore obvious that eq.
(VI.9.3) will maintain its form when T is replaced by 8, but that on the left-
hand side of the boundary condition (VI.9.6) the term Cpok,ya will be added.
As demonstrated below, this will not substantially affect the conclusions in
this paper.

*+ Ya where -
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T (0, ) = T@Q, t); (VI.9.5)

In deriving the expressions R'°’(z, t) and R'*’ (2, t) in Section 3, the
condition of equality of radiation intensity at the interface of two media was
used. Here, this condition must be replaced by a more general condition of
heat balance on the boundary (see also Sect.7):

e |
F®(0) -+ C,,pk,a%(;-— —~FO() |

(VI.9.6)
together with the condition }
)
F(zm (0) — A(M F;M (0) + (1 _ A(l)) F(zl (0) (VI.9.7)
or with the condition
FP (0) = AVFP (0) + (1 — A™)F " (0) + Cypokt 220 . (VI1.9.8)

The expressions of radiative heat influx R®) and R'Y directly contain the
radiation intensity on the boundaries [see eq.(I.2.4.)] rather than the fluxes
determined from conditions (VI.9.6) - (VI.9.8). ‘

In the investigated case of a two-layer medium, we have

R (z,1) = E&%ﬁo {19 ©, r) e-reeredo +
+2x{ BY @ E, (v — t)) dt — 4B 7)), (VI.9.9)
RW (z, 1) = P 21: a [% Fi ©, r) g~ %imsecd g +
) 2na6p,. oBo i B 1.1 Y,
+ 2na; \ BY @) By | (o] m — & ) dt — 4nB{"]. (V1.9.10)

0

In Section 7 it was already found that the assigning of fluxes on the
boundaries is not sufficient for determining the intensities I3°’ (0, r) and
I;(ll) (0, r) without auxiliary conditions. There, as such a condition it was »
sufficient to assume that the radiation intensity,leaving the boundaries of the
cloud, was independent of direction. '

Here, we will also assume that /196
I“) (0, r) — ‘—::'F;') (0)‘ (VI.9.11)

However), an analogous condition is not sufficient for determining the
value of I{;’(0, r) in view of the fact that the boundary conditions (VI.9.6)
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to (VI.9.8) include radiation fluxes integral to the long-wave spectrum. There-
fore, in addition to the assumption as to the diffusivity of the radiation
leaving the upper boundary of the cloud

180, ) = = F%(0), (VI.9.12)

it is necessary to introduce still another troublesome assumption, namely, that
this radiation is independent of the wavelength:

FO (0) = 8, FO (0), 5 (VI.9.13 )

where 5\; is the relative length of the interval A\.

In this manner, three rather serious limitations are introduced [egs.
(VI.9.11) - (VI.9.13)] which, generally speaking, greatly distort the physical
meaning of the problem.

At present, no decision has been reached as to a suitable replacement or
supplement of the boundary conditions (VI.9.6) - (VI.9.8). We are convinced
that the difficulties connected with the boundary conditions can be completely |
or largely eliminated if the stationary problem is solved or if the exact equa-
tions of transfer are replaced by approximate equations for the radiation flux
or, finally, if the selectivity of the absorption spectrum in both media as well
as in the case of a purely radiative problem, is disregarded. In our case, the:
above-mentioned difficulties cannot be eliminated, so that we will confine our
calculation to a determination of the temperature for small time intervals in
the cloud layer. As shown below, in this case only the first of the three
auxiliary assumptions [egs.(VI.9.11) - (VI.9.13)] is used.

To compare the results of this Section with the case of the pure radiation

model given in Section 3, two additional assumptions are introduced, which are
of no basic importance:

A(i) — 0' ‘ ‘ (Vlogoll;,)
F{ (0) = nI{ (0). (V1.9.15)

Under these conditions, the expression R'®? will not change with respect
to the pure radiation case [see eq.(VI.3. 10)]

R0 =5 {5 | B §) By (wik + 1)+
i—~1

0

|
+{B®E(E—cp @t — B9 @), | .
0 ; vi.o%.1l

We will now return to the solution of eqs«(VI.9.3) and (VI.9.4).
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Let us formally consider eq.(VI.9.3) as being an inhomogeneous equation of
heat conduction in a semi-infinite medium. The free term of the equation equals

f(s,0) = ;f;,;R‘” (79 (2, 1); (s, 1)l (VI.9.17)

The solution of this equation for the boundary condition (VI.9.5) has the /197
form of "

-

b (z-Ey _(z4Ep ‘
Tz, ) = 1 g LI {e D __, um} % f
2V ) vDu f

a|

z

ﬂwgoa+3?

—_— cD'u-u 1)
D —ar© T‘ 0, 1) dt +

_ (z=Ey o AzEr . ,
{e ANt __ AD'(l-l)} f 1) dtdg. | (v1.9.18)

;‘9/1~

I

)
ZV::O D(z_t)

f,

<

The calculation with eq.(VI.9.18) is made numerically. In order to deter—

mine T¢®’ (z, t) at the instant t, s, we will assume a sufficiently close instant
ty-1 as the initial instant and stipulate that, in the narrow interval (ty-1,
t,) the following relations exist:

F@&D =1 G ),
T(l) (0, 't‘) — T(l) (0, tk—l)-

Using such assumptions in eq.(VI.9.18), an integration with respect to time can
be made. If, in addition, the right-hand side of eq.(VI.9.18) is presented in
the form of the sum of the integrals of the individual terms and if in each
integral a replacement of the variable of the type

2tE
=u
DY

is made, we will obtain the following expression for the temperature of the
cloud at the kP instant of time:

T (z, tx) = TV, tyy) [1 — (p(:_)] +
z/c

& 7Oz — cu, eyl du — 138 ﬁ?“” feu — z, ty ldu +

1

b

&eﬁr“” [z + cu, ty] + 28

V
+ Vi

%— VB—MMJRMM+
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+ 2 ﬁ_—g flz+ cuy tegd R(u)du — 2 A S f leu — z, tyy] R (u) du. 1
e Vs L (VI.9.19)
Here, i
“ (VI.9.20)
2 ;

® @) =2 {evar, t
Rw =ev—ull —®), (V.9.21),
¢ = 2D A, (V1.9.22)
‘ |

At the same time, the formula
TO @, ) = I (5, tyy) + B¢ RO (5, 2,.) (V1.9.23)

20

is used for calculating the temperature in the layer above the cloud.

9.3 Study of the Solution

It is easy to verify that
(R@a=YF",

[

In addition,

ey = ﬁ .
"
Therefore, at ¢ = 0%, eg.(VI.9.19) is transformed into

Wmm=ﬂmm»+wmmm{

i.e., into the expression T(o)(z, ty ) for a pure radiation model.
The sum of the first four terms on the right-hand side of eq.(VI.9.19),

denoted here by X(z, t), represents the purely turbulent effect, namely, the
temperature distribution due to the influence of turbulent mixing at the

% Below, the quantity

3

is considered as the characteristic of turbulent mixing for a constant At.
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boundary and to the initial temperature conditions. If, at t = ty.,

T(o) (Z, tk-l.) = Tm (z’ ‘kd) = mtv
then - v
X (2, ) = T (2, 4,_,) = eonst.

Generally speaking, X(z, t) depends only on the temperature distribution
within the cloud at the instant ty-; and on the characteristic of turbulent
mixing k¢ (or ¢). At the same time, it was shown in Section 4 that, in opti- !
cally dense clouds, the radiation effect does not depend on the temperature
distribution inside the clouds but is determined by the initial temperature and!
moisture above the clouds and by the liquid-water content in the investigated
layer within the clouds. Therefore, both effects are separate and, at given k; ,
one or the other may prevail depending on the initial conditions. ,

Although produced by different causes, turbulence and radiation are later !
subject to interaction. In our formulation of the problem, the influence of
radiation on turbulence is neglected. Some qualitative considerations on this ;
point are given in Section 10. ‘

The sum of the fifth to seventh terms in eq.(VI.9. 19), denoted by Y(z, t)
represents the influence of turbulence on the radiation regime of the cloud:

n
a

Y (z, 1) = A

Va l(z~w,lx-1)3(“)du’—

[ Xy B

[

—yE e — s ) R a2 guz + o 100 R (o) da. (VI.9.24)

z/c

The analysis of eq.(VI.9.16) made in Section / suggests that, at a water
content in the cloud increasing with height and with the real temperature /199

1

and humidity distribution above the cloud, the function f(z, t, 7o) = ©

R’ [T(O) T(l)] has the following properties in the vicinity of the upper
boundary:

I. f(z, t, o)< Oat z = 03

II. max |f(z, t, T )| = |£(0, t, To )] = const, irrespective of the value
of To;

d| £]

III. € 0at z =03
ef

dalf
Iv. l < 0at z>0.

dTo

These properties exist in any case in which

p,(z):-a-{—bz; b)ﬁ,
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if
Bgu (Z) = + biza bi < 0’

and also at N
B (0) — B (0) <@ >0,

where a is determined by the limiting value of the above-cloud inversion, durlng
which cooling takes place; a is greater the smaller the optical thickness of ;
the layer above the cloud. In the last inequality, B‘*’(0) is determined from |
the temperature at the upper boundary of the above-cloud inversion while B (o) (O)
is determined from the temperature at its lower boundary.

FigeV1.9.3 Graphs of the Functions R(u) (Curve 1)

and Ep (alml + T —}-i—), € =2 -cu (Cuﬁe 2)'

If, for instance, at the initial instant
Py (2) = const, T® (z2) = T (2) = const,

then, during a certain time, the following relation will exist:
f(z, ) = — cE,(ulml + roﬁ).

where m is the mass of water vapor in the atmosphere above the cloud; @; = ‘
= 0.2 cm°/gm; ¢ is a constant.

It follows from condition III that, at increasing z, the third term in
¥(z, t) rapidly becomes zero. In the first and second terms, f(§, t) retains
a constant value along the characteristic
B : - |

E=|z2—cu| '1

so that the curve f(§, t) moves along the axis u at any change in z. In
Fig.VI.9.3, Curve 1 represents R(u) and Curves 2 represent |f(§, t)| = che (aym+

+ To T) for z = 0, 0.1, and 0.3 at ky = 10° cmz/sec, m =2 gm/cmz and To =
1180 ' o



= 50. The maximum value of f(§, t) is reached at § = 0, i.e., at

U oA (VI.9.25)

The last relationship, together with eq.(VI.9.3), shows that at increasing z

the product f(§, t) R(u) and thus also Y(z, t) decrease. Therefore, the radia-

tive cooling decreases with increasing z, but considerably slower than in /200

the case of pure radiation. For instance, if f(z, t) = —cEB(crlml + Tg —;—) at

vz = 0.1 and T, = 50, the purely radiative effect is equal to zero (see Sect.l).
As shown in Fig.VI.9.2, the radiative cooling in our case is by no means equal
to zero at z = O.1.

that
Y(Z, t)l=0 = 09

which differentiates the investigated problem from the pure radiation case,

where the maximum cooling was reached at the point z = O. In our problem, the
following condition is retained at the boundary

TOQ, 1) = T® (@, £)

and the temperature conditions at z = 0 are determined by the cooling of the
layer above the cloud, which cannot be extensive in any case (see Sect.5).
Maximum cooling takes place inside the cloud (near its upper boundary) at the
point zy, determined from the condition

dY
—d? = 0.

2=z,

The expression is readily reduced to the form

z'c
3

dy _ 24t L, qdR . 2At
dz—clf§§“z el e = S %
o0 &5 -
. dR 2A¢ dR
X §f [z + cu, txy) -;;du—c Va zscf [eu — z, tg_lla-;du, (VI.9026)=
ivhere, according to eq.(VI.9.21)

dR -
Z=—Vall —® ). (VI.9.27)

; It follows from eq.(VI.9.26) that

At z » =, ¥(z, t) = 0. From the determination of Y(z, t) it also follows |
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ay
du Z==0

AL ( dR :

= —_— 4 —_— cu) —— du 0- !
A RK LS (V1.9.28)
Since Y(0, t) = O, the last expression proves that Y(z, t) increases in .
absolute value near the point z = O; simultaneously, both radiation and cooling;
increase.

It is obvious that
hde

c—oo 43 z=0 cap 92 1z=0

Therefore, cooling in the neighborhood of the point z = O increases more
strongly the less extensive the turbulent mixing becomes and approaches, at the!
limit, the pure radiation case of maximum cooling on the boundary. f

. daY . . . s s
By expanding e in a serles according to powers of z, and limiting the
calculation to the first two terms of the series, we obtain the following ex-
pression for the determination of the point 2o where the cooling reaches its
maximum value:

oo

Z =‘-,%0)§ f(cu) 1 — ® ()] du. (VI.9.29)
From this it follows that | /201
lim 2y = Q.
)

At the same time it cannot be asserted that 2z increases with increasing c,
s:ane it is easy to demonstrate that the value of

©0

w(c)=S/(cu)H--(D(u)]du

0

decreases with increasing ¢ [see the property III of the functions f(§, t)l.

1 Examples for calculating the quantity z, will be given below.

" Above, we investigated the variation in radiative cooling Y(z, t) with
helght. Let us now define the behavior of this quantity when other parameters
are changeds We recall that

imY (2,0 = LR (g, 1),

cC—0

i.e., at a lessening in turbulence, the temperature conditions approach the
conditions of pure radiation. At given z and at increasing c, the curve
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f(lecu - z!), in accordance with eqe(VI.9.25), shifts toward the side of smaller
u, as a result of which Y(z, t) increases. However, this causes an increase in
the derivative

df _ df

du = CaE"*
and, since

df

= <0

Y(z, t) will decrease. It follows from this that, on increase in ¢, the varia~
tion in Y(z, t) may be non-monotonic. :

The sum total of conditions II and IV leads to an - at first sight - un-
expected effect: On increase in the optical thickness of the cloud To, the
radiative cooling at the given point z decreases in the presence of turbulent
mixing. This effect, however, becomes physically understandable when consider-
ing that, in accordance with conditions II and IV, the rate of radiative cooling
does not increase with increasing To and that its influence is concentrated in
a progressively narrowing layer at the boundary of the cloud. Therefore, in
accordance with eq.(VI.9.2,), the absolute value of Y(z, t) decreases. This
latter consideration applies, of course, only to optically dense clouds.

9., Results of the Calculations

Below, we give some results of calculations based on eq.(VI.9.19). The
following initial conditions were assumed:

TO(z,80) = TN(z,00) = 273, pe(z,Le) = 0.5-107 g/em?,

With this,
7/ (z, t)) = — ck,y (at,ml + T _[-T) ,
where B
T Ba® T

The first time step was computed and the variation in the quantity AT{®) =
= [T (2, t;) - T(o)(z, to )] was defined individually for variations in each
of the quantities ky, 2z, and To, while the other two remained constant. The

-i%r, which corresponds to 0.5 hr.

An interpretation of the calculation results shows that, in determining /202
the temperature inside the cloud at the initial instant of time, only the first
of the three conditions (VI.9.11) - (VI.9.13) was used. For comPuting AT ®) at!
the subsequent instants of time it is necessary to determine T‘! (zf t), i.e.,
to make use of the conditions (VI.9.12) and (VI.9.13). However, T'‘’(z, t)
enters eq.(VI.9.16) only through the expression

value of the time step was equal to At =

m; -

Y = 2o, { BY @) E, (oE + 1)t

0
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In Section 5, we showed that the quantity Y in a pure radiation model re-
m?ins practically constant over several steps of time since the variations in

T (2, t) are small. Therefore, it can be expected that the calculation of the

TABLE V1.9.3
| } - Z, m
‘ T &y emfsec )
| ' £ 1] 2 50 1410 26 300
25 103 1.95 2.06° 0.99 0.19 § 0.8 —_
25 104 0.44 0.74 0,55 0.31 0.2 —
15 103 2.44 2.07 1.80 0.66 0.10 0.02
8 103 2.94 3.93 KT 1.70 0.55 0.20
5, Y% 100 36 5 3 — -
o, o, 95 l 100 S0 10 3 —

temperature within a cloud, based on eq.(VI.9.19), will contain no substantial

errors due to the conditions (VI.9.12) and (VI.9.13), if the time interval is
not too great.

TABLE VI.9..
1
| z, km
iU, km) «,
U0 t,1
0.240 83.11]1.70
0.460 ] 15 ;1.8 | 0.66
0.760 | 2510.98] 0.19
TABLE VI.9.5
l k" cmi/sec
T 2, m 10 10t 1] e
25 0.0231 2.0571 0.74 0.09 0,01
25 | 0.050 | 0,985 0.550 | 0.148 | 0.0191
8 00251 3.93°1 1.70 0.38 0.05 ;

18,
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The results of computation of the quantity AT'®’ are presented in Tables
VI.9.3 - VI.9.5

Table VI.9.3 shows the variations in AT‘®’ on penetration into the depth
of the cloud, for different values of the coefficient of turbulent mixing k
and of the optical thickness of the clouds To. In addition, in Table VI.9.3 we
give the extent of variation in cooling with depth, for the pure radiation
case 8, (in percent of maximum cocling) and the variations in cooling 6 at k¢ =
=10° cm /sec. According to Table VI.9.3, the maximum cooling for k¢ = 10°
and 10* cm?/sec takes place at the point z = 10 m. For this case, the calcula-
tion with eq.(VI.9.29) yields z = 10 m at k, = 10° cm /sec and % = 20 m at
ke = 10 cm?/sec. Therefore, eq.(V1.9.29) gives an approximately correct posi-
tion of the point of maximum cooling. The agreement between the values of zy
based on data in Table VI.9.3 and on eq.(VI.9.29) would probably have been /203
better if the variation in AT'°’ ¢z had been presented in greater detail in this
Table.

Table VI.9.. shows the decrease in cooling at a given point at increasing
To for py = 0.3 em® and for different thicknesses of the cloud H (assuming
that k¢ = 10° cm®/sec).

Finally, Table VI.9.5 gives the variation in AT’ with increasing k¢ for
different values of To and of z. The Table shows that an increase in k. leads :
to a noticeable decrease in radiative cooling. According to the data in Table {
Vi.9.1, the value of k4 = 10° cm?/sec represents a case in which the turbulent
mixing in the cloud is practically zero. Nevertheless, even at such a small ke s
radiative cooling decreases with respect to the pure radiation model by a factor
of 1.5 - 3.0, Incidentally, some underestimation of cooling may occur in
Table VI.9.5 if 2z is not included in the selected quantities. Nevertheless,
radiative cooling remains considerable from the viewpoint of the energy of at-
mospheric processes and at relatively intensive mixing, if k¢ is of the order
of 10° cm?/sec. In this case, the cooling, according to Table VI.9.5, is
0.3 - 0.8°/hr. In addition, turbulent mixing leads to a greater penetration of
cooling into the depth of the cloud and apparently to a prolongation of the
period of this process.

Conclusions

The above-described results yield the principal features of radiative heat:
exchange in clouds and make it possible to define the nature of its influence
on the development of cloudiness. The following conclusions can be drawn:

1. Long-wave radiant heat exchange in a formed, sufficiently dense cloud,
when disregarding the smoothing effect on turbulent mixing and heat influx due
to phase transformation of water, leads to a sharp cooling of the upper part of'
the cloud.

The cooling process has the following properties:

a) The rate of cooling at a given level depends on the ligquid-water contené
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and the temperature at this level as well as on the temperature and moisture
distribution above the clouds in the layer having a thickness of the order of
2"[4,1011'

b) The cooling remains practically constant on variations in the tempera-
ture profile and in the optical thickness of the cloud as a whole.

c) The intensity and rate of cooling is largely determined by the initial |
conditions in the layer above the cloud, i.e., by the quantities T(l)(z, to)
and p.l (z, to); on formation of an above-cloud inversion the rate of cooling
decreases.

d) The cooling decreases rapidly in direction of the depth of the cloud
and takes place within a narrow layer of the order of 50 - 100 m,

e) If the liquid-water content does not decrease in direction of the upper.
cloud boundary, then the maximum cooling will take place at its upper boundary.

3. Clouds of the middle layer are cooled much more extensively by natural
radiation than clouds in the lower layer, due to the more intense back-scatter—
ing in the second case.

L. Interaction between radiative cooling and heating by absorption of :
infrared solar radiation leads to differing effects at different levels and at
different instants of time.

In the absence of a temperature inversion or at moderate thickness of the
latter, the uppermost layer of the cloud, 20 - 50 m in thickness, will be in
the same condition by day or by night, — meaning that the heating is small with
respect to the cooling; this is followed by a zone of heating which is quite
weak in intensity compared with the cooling at the boundary but which penetrates
considerably deeper into the cloud.

5. Due to the heat of condensation, the radiative cooling is weakened /20

6. Strongly developed turbulence sharply reduces the rate of cooling in
the initial instant of time, making this process more protracted and penetrating
more deeply into the cloud.

7. Scattering of long-wave radiation on water droplets, generally speaking,
leads to an intensification of the cooling process. However, if the effect of
scattering is presented in the form of reflection from the boundary, cases of
attenuation of cooling may become possible (at strong reflection of radiation
inside the cloud).

8. The inverse of this or another manifestation of the radiative cooling
process consists in the formation of a radiative temperature inversion above
the clouds: The temperature increases sharply on transition from the cooled
layer of the cloud to the layer above the cloud with a slowly varying tempera- |
‘tureo :
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9. In the pure radiation case, the inversion layer is compressed into the
surface of temperature discontinuity, which coincides with the upper boundary
of the clouds.

10. Since cooling takes place entirely within the cloud layer, it must be
assumed that the above-cloud temperature inversion originates from radiation
penetrating into the cloud. In considering turbulent exchange, the vertical
development of the inversion must be determined. This also takes place pri-
marily in the upper part of the cloud and to a lesser degree below it.

11. The above investlgatlons yield the prlncipal features of radiative
temperature inversion. This inversion takes place in a narrow layer (of the
order of 100 m) and is characterized by its high intensity, of the order of 18,

12. The time required for establishing an inversion of radiative origin
is 3 - 5 hrs.

13. When the upper layer of a cloud is cool, condensation of water vapor
and accumulation of liquid moisture take place. The 1nten51tg of the process
is such that, within three hours, an amount of 0.1 - 0.2 gm/m" and more is
accumulated in the 100-m layer at the upper boundary of the cloud.

14. The formation of an inversion of radiative origin and the development
of a cloud by radiant transfer is promoted by the rapid drop in moisture above |
the level of condensation. If the moisture deficit becomes zero at some level .
and a sharp decrease in the moisture above this level takes place, a cloud can.
form only by radiative heat exchange.

Next, we will investigate the correlation between the above features of
radiative heat exchange in clouds with the actually observed processes.

We note first that, according to measurements made by V.L.Gayevskiy
(Bibl.21) the ascending flow of long-wave radiation at the upper boundary of a .
cloud layer is much greater than the descending flow. As a result, a radiative:
cooling of the order of 9p/day occurse This value is small with respect to the
computational data given in Sections ) and 5. It must, however, be considered
that V.L.Gayevskiy's data were averaged for layers having a thickness of '
200 - 300 m.

We further demonstrate that the temperature inversions observed above ;
stratus clouds qulte often resemble the above-described purely radiative types::
They take place in a narrow layer of the order of 100 m and have an intensity
of or more.

Examples of such inversions are shown in Section é and also in the curves
of Fig.VI.10.1 plotted with data of aircraft soundings taken by TsAO (Central
Aerologlcal Observatory). We note that in almost all of these graphs another
inversion layer of greater thickness occurs above the inversion of the radia-
tive type, with a significantly smaller temperature gradient. The same phe- [20
nomenon was discovered by A.M.Borovikov (Bibl. 18) who studied 1435 cases of
temperature distribution in St, Sc, and Ns cloud layers; another description is
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Fig.V1.10.1 Examples of Temperature Data of Above-
Cloud Inversions
Solid curves - temperature; Broken curves -
relative humidity
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given by another author (Bibl.2) based on observations of 500 cases of the same
cloudiness. The Table from the latter paper was given in Chapter I. Here, we
are obviously dealing with two inversions of different nature which not infre-
quently occur simultaneously: one of them, known as the sinking inversion, is
the principal cause of cloud formation and the second, known as radiative in-
version, is produced by the cloud layer itself in the course of its development.
As shown in the diagrams, the latter may wedge into the cloud.

A.L.Dergach (Bibl.5) obtained interesting data in investigating radiation
fogs in the Arctic. He mentioned that, over a comparatively uniform underlying
surface, fogs are sometimes formed in spots and do not coalesce into a continu-:
ous cover. The result of temperature soundings in one such case is plotted in
Fig.V1.10.2. This shows the considerable difference in the nature of the tem- .
perature inversion in the region of fog cover (solid line) and in the region
free of fog (broken line). The inversion above the fog has a clearly expressed.
radiation character.

0 ‘ 1 i i ] 3 J.
6 -5 4 -3 -2 -1 0
t,°C

Fig.VI.10.2 Temperature Profile in Fog (So0lid Curves)
and in a Region Free of Fog (Broken Curve)
UBz and UBs are the positions of the upper boundary of
the fog, corresponding to the temperatures t2 and t,

Further, according to measurements made by A.L.Dergach, the temperature ,
within the fog is lower than at the same level outside the fog (see Fig.VI.lO.ZD.

The important role played by radiation in the formation of an above-cloud
inversion is confirmed by the absence of an inversion in the lower layers of
the cloud in the case of two-layer cloudiness, a fact established by many
authors [see for instance (Bibl.2)].

We analyzed the material of large-scale standard aircraft soundings taken -
by the Central Aerological Observatory at Vnukovo. Work-up of the data per-
mitted the following conclusions:

1) If there is no second cloud layer above them, St and Sc clouds of the
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lower layer generally exhibit a temperature inversion which often resembles a
radiative inversion in nature but which is less extensive.

2) Almost no inversions were observed above the As, Ac clouds of the middle
layer.

3) The data of aircraft soundings also reveal no narrow cold layer in the
upper part of the cloud.

We will start with the explanation of the last fact: Apparently, there are
two reasons for the difficulty in detecting the layer of radiative cooling. The
first reason is of a methodological nature. A low-inertia thermometer having a
high resolving power with height is required for detecting the narrow cold
layer. The standard aircraft meteorograph does not meet these requirements.

In addition, the flight intended to establish the microeffects in the tempera-
ture distribution with height must be performed in accordance with a special
procedure which differs from that of standard vertical soundings. Therefore,

a special investigation procedure must be developed. The first attempt at such
an investigation, undertaken at our request by A.M.Borovikov and I.P.Mazin /207
(to whom the author expresses his deep appreciation) with a special electrical
meteorograph having a height resolution of the order of 20 m, did not detect a -
cooling layer. i

It is well possible that here the second reason for the difficulty in _
detecting such a layer, physical in nature, was involved. The narrow boundary
layer with the superadiabatic temperature gradient is unstable and cannot exist:
for prolonged period of time. Apparently this is one of the principal conse-
quences of radiative cooling of clouds. The resolution of the instability of
the cold upper layer of a cloud leads to convection one of whose manifestations
is the wave-like character of the surface of a stratus cloud. As shown else-
where (Bibl.19, 20) in the presence of a two-layer cloud cover, the upper
boundary of the lower layer is often flat, a finding that confirms our conclu-
sion.

A second manifestation and consequence of convection is the reconstruction
of the temperature profile up to establishment of an approximately constant
gradient in the cloud. As mentioned at the beginning of this Chapter, these
considerations were used by Urfer (Bibl.)) for explaining the evolution of a
vertical temperature distribution in a layer of fog many days old. This also
explains the disagreement between the calculated and actual temperature profile,
shown by Curves 2 and 3 in Fig.VI.6.6. Convection must be taken into considera-
tion in the theory in order that the layer of radiative cooling obtained by
computation would lead to a redistribution of temperature in the entire cloud;
the stable layer of the inversion is maintained here.

However, on the basis of the above consideration it is not permissible to .
draw any conclusions as to the impossibility of detecting or, expressed more
accurately, as to the short-lived existence of the layer of radiative cooling.
Actually, some observational data point toward the existence of such a layer.

First of all, this is shown by the temperature drop in the fog as compared,
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with the adjoining region not covered by fog, which was discovered by A.L.
Dergach (see above). In addition, G.M.Zabrodskiy (Bibl.1l9) investigated the
temperature field in stratus clouds by means of a highly sensitive and accurate
thermometer. He found that, in the absence of an upper cloud layer, temperature
pulsations occur and the upper boundary of the cloud shows a wavy convective
character. For this reason, an aircraft in horizontal flight along the upper
boundary will dég in and out of the cloud. The temperature in the cloud crest
is found to be lower than at the same level outside of the cloud, i.e., in
the trough of the wave, in the absence of an above-cloud inversion and 3° lower
in the presence of an inversion. Obviously, the first figure represents only
the effect of radiative cooling.

The absence of inversions above the clouds of the middle layer established
by us, generally speaking, contradicts the theory according to which the procees
of radiative cooling is greater the higher the cloud (see above). Apparently,
what is happening here is an increase in turbulent mixing with height. Accord-
ing to the few experimental data available, the coefficient of turbulent mixing
in the middle troposphere can be considered equal to 10° - 10" cm®/sec while,
according to the data in Table VI.9.l, it is equal to 10° cm®/sec in clouds of
the lower layer. :

Table VI.9.5 shows that, at ky = 10° - 10 cw®/sec, the radiative cooling
cannot be appreciable. At the same time, it might well be that our conclusion
as to the absence of conversion above the clouds of the middle layer is not :
sufficiently substantiated.

It is known from the literature that temperature inversions frequently
take place also above As and Ac clouds; however, to detect such inversions, a
much larger number of cases than done by us must be investigated.

The above statements prove the role played by long-wave radiation in the
development of a stratus cloud cover. The process of radiation determines:

1) Formation and intensification of the above-cloud inversion.

2) Creation of convection in the upper part of the cloud, which leads /208
to reconstruction of the temperature profile and to establishment of the wavy
nature of the upper boundary.

3) Accumulation of droplet moisture in the upper part of the cloud.

It can therefore be considered that radiant heat exchange is a factor in
the self-propagation and self-maintenance of stratus clouds.
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CHAPTER VII

ROLE OF RADIATION IN THE FORMATION OF THE STRATUS CLOUD /209

Section 1. Formulation of the Problem

In the preceding Chapter, the influence of radiation on a formed suffi- :

ciently dense cloud was discussed. However, some of the presented results (see,
for instance, Fig.VI.6.6) show that long-wave radiation may play an important
role in the establishing of the thermal and water regime of the cloud and in

the initial stages of its development. In addition, the problem was simplified:
not all forms of heat exchange were fully considered, moisture exchange was ne-
glected, and simplifying assumptions connected with the difficulty of formu-
lating the boundary condition in a two-layer medium were introduced. In the
present Chapter, the more general problem of investigating the process of forma-
tion and the initial stages of development of a stratus cloud, taking into ac-
count moisture exchange and the basic forms of heat exchange (including radia-
tive exchange), is treated. The main purpose of the investigation is a clarifi-
cation of the role played by radiation in the above process. For this reason,
it is advisable from a methodological viewpoint to solve the problem first with-
out and then with consideration of radiative heat exchange and then to compare .
the obtained solution.

1.1 Fundamental Egquations

let the density of water vapor or the humidity of the air py(z, t) and the
temperature T(z, t) be given. let p,[T(z, t)] be the density of the vapor,
saturating the space at temperature T(z, t). If, at 0 < z < 10 km and t < to,
the inequality

p"‘(z?l) < pw [T(z,t)ly
holds and if, for t = to, there exists such a value O € z, < 10 that
P (2a:0) = P [T(20, ta)},

then we can define the instant t, and the level z, as the time and place of in-.
cipient formation of the cloud. In this manner, no rigid boundaries of the
cloud are introduced here.

The entire atmosphere (o < Z < 10 km), with a humidity and liquid-water
content continuously varying with height is considered. The layer occupied by
the cloud is determined at each instant of time t from the relation

Pv (zl; t) =0, po (22, t) = 0,
po (2, 1) 0 and 21 < z< 2. !
19,



In the case of stratus clouds, the moisture saturation takes place by /210
turbulent transfer of heat and moisture, by vertical currents, by advection, by
condensation, and by radiative transfer. The equations of heat and moisture ex-
change which take all these factors into consideration can be written in the
form of (Bibl.2)

dg a i) ‘
A adr 0 (ke ®)  pa

where p is the air density; q the specific humidity; k. the kinematic coeffi-
cient of turbulent heat conduction; p the air pressure; A the thermal work
equivalent; © the potential temperature; m the mass of water vapor condensed per
unit volume in unit time; L the latent heat of vaporization; R(T) the influx of
heat per unit volume in unit time, due to radiative heat exchange.

If we consider that

w_ar 1 ap |
dt dt L’pp d‘ (VII.]..B)

and neglect the variations in p(z) with respect to 6(z) and q(z), i.e., if we

assume that

and

then eqs.(VII.I.I)and (VII.1l.2) will assume the form

dq ;v_ 0 V . dq m ;
=gk = (VII.1.4)
48 8 , 90\, 1 p Im_ 2
%= 55 (eok ) + xRl Y (VII.1.5)
Here, ; ‘
df _of of . 0
P FE

f = 8 or q with the x-axis directed along the horizontal flux, u and w are the ‘
horizontal and vertical velocity components which are assumed to be known and
‘constant.

In the system of coordinates comnected with the horizontal flux, i.e., when
substituting
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Il'mx""t“

we obtain d/ _
+dz

and eqs.(VII.1.4) and (VII.1.5) are transformed into

+w az(kla')"’:’r

-] (VII.l.é)
00 a9 ] a9
3‘[.+w_03‘ =—3—:_(k‘ -32)+CppR(?) +C’,p' (VII‘I.'])
_We will introduce the characteristic quantities: T, = 27, to =1 day /21
owp = 0u(To) = 49 gm/m®, 2o = 1 km; po = 1.3 x 10° gm/m°, w = 1 cm/sec; the
dimensionless variables: z = —2 ,'t = —E——, m = oo ’ p = P ’ Pw = P s
@ _ 5 Zo to Pup Po Puwpo
q-= °_ or q = -:;— and the designations:
pvp [4]
c=""—08, b= P =0.034, D=1k —0.086k
2 Saiy ]

0 cpp.T

(ky = const expressed in m’/sec). Then, eq.(VII.1.6) - (VII.117) will assume
‘the form

wi—p¥I_m
+C"’ P (VII.1.8)
30 -0 _ . 0% m toR(T)
Z —=DS+b—=4 221,
at T dz az° + [ + Topocpﬁ F (VIIol'g)

Below, the vinculum(denoting dimensionless quantities) is omitted.

1.2 Boundary and Initial Conditions

i In discussing heat exchange (correspondingly, moisture exchange) in a lim-
ited medium, the conditions of equality of the heat (moisture) flux on both
sides of the boundary are physically substantiated.

In this book, heat exchange (moisture exchange) at the level above z = :

= 10 km is disregarded. Therefore, the flow of heat (moisture) through the
upper boundary of the investigated layer must be assumed as given. This is
justified by the fact that it is logical to assume the level z = H to be the
height of the tropopause or the retardlng layer and to stipulate that the fluxes

of heat and moisture are zero at z = H.

At the lower boundary of the atmosphere we assign the sought quantities T E
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and q which can be measured at the earth's surface. Thus, er.(VII.l.S and
VII.1.9) are solved with the following boundary and initial conditions:

1. At the lower boundary of the atmosphere (z = 0), the temperature T(O, t)
and the humidity o,(0, t) and thus also q(0, t) are given, since the air density
p(z) is assumed to be known. :

2. At the upper boundary (z = H), the fluxes of heat and of moisture are
given:

0 a
kg Fry and ke-é—z—.

Here the coefficient of turbulent mixing is assumed to be constant and
known, so that the following derivatives are given at the upper boundary: !

a0 aq |
a2 and Jz ° F
E

; 3. At the initial instant of time, the temperature T(z, 0), the humidity
> pu(z, 0), and the liquid-water content p,(z, O) are known.

iy The conditions at the boundary are assumed to be stationary and coupled
> with the initial conditions:

_ ' ar| _ or
TON=7009 G| =5l s
d aT
90,9=90.0 A _ =5l a0
In addition, we also consider the case of [g;g
°aq \ == 0. \ '
aT_ =05 Bz \1=H

9z \z—'—ﬂ

| After computing T(z, t) and pu(2, t) the liquid-water content p,(z, t) is
determined from the condition

| )= | s L Pela ) SpelT o),

Po (2, 1) —pa [T (2,1)]  or pg(z,t) >pylT (s, 1)l 1 i

Bection 2. The Problem without Allowing for Radiation

The investigation and solution of eqs.(VII.l.l) and (VII.1.2) - at R(T) = |
= 0 - were covered by M.Ye.Shvets (Bibl.2 - 5) and L.T.Matveyev (Bibl.6 - 8). |

S The problem is discussed more fully elsewhere (Bibl.2 - 5). Relations are
'~ ‘introduced which make it possible to determine m, T, and p,{(T) and other values
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" rfa.na.logous equation for the function m(z, t):

directly. The interaction between various forms of heat exchange is investi-
-gated. Conclusions are drawn as to the rate of shift of the cloud boundaries. |
However, M.Ye.Shvets and coworkers obtained no concrete numerical results. Such
results can be obtained more readily by making use of the method developed by
L.T.Matveyev, which is outlined in detail below. In this Chapter, the method
is applied to the case of R(T) # 0.

Thus, in accordance with L.T.Matveyev we introduce the new wanted func-
tions

A5 t)=20+g,

P2, 8)

|
(v11.2.1)§

Let us assume that the specific total moisture content S(z, t) is dissi-

pated by turbulent exchange as is the specific mmidity q(z, t), i.e., that
S(z, t) is governed by the equation

as as S

i

From egs.(VII.1.8) and (VII.1.9), at R(T) = O, it is easy to obtain an

an anb 6!;;
o TG =Dga. (VII.2.h)

If m(z, t) and S(z, t) are computed, then the sought values T(z, t), -
pu(2, t) and p,(z, t) can be determined by the method given in another paper
(Bibl.6)., Here, we will assume that, at the point z at an instant of time t, |
the cloud has already formed; then, p.(z, t) = pu[T(z, t)]. The last function
can be determined, for example, by means of Magnus' formula

| Eat0 2 |
| pu(T) =01 — 45, (VIL.2.5)

1

|

: where F, = 6.1 mb is the vapor pressure of water vapor, at 0°C; a = 7.5; b =
= 237 ; R, = 460 m’ /sec’® * deg is the gas constant of water vapor; p.(Ts is de-
termined in gm/cm”.

; If p(z) is a known value and m(z, t) is computed, then the expression /213
+ (VII.2.1) taking eq.(VII.2.5) into consideration represents a transcendental
. equation for determining the temperature T(z, t). '

-

Along with the graphical method of solving this equation, proposed by
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Matveyev (Bibl.£), a numerical method for determining the temperature can be
developed which permits higher accuracy and is more convenient when using high-
speed computers.

It is readily demonstrated that the second term in eq.(VII.2.1) constltutes

no more than 5 - 10% of the first term. Therefore, using, as zeroth approxima-
tion,

B0 (2,1) = bn(z, 1), (VII.2.6)

the quantity 8(z, t) can be determined by the method of successive approxima-
tion, based on the formulas

O (2, 1) = bz, 1) — bg (Tat), | (VIL.2.7)

at® ?
b, '
q(Tx) = 0,1 ——————f{ 17(‘).,9 ) (VII.2.8)

Knowing ©(z, t) it is easy to compute T(z, t) by means of the following formula
,[see (Bibl.1l)]:

T(Z. t)=9(z,t)—102. (VII.209)

After computing T(z, t) from eq.(VII.2.5), 0,(T) is determined after which, at '
given S(z, t), the quantity p,(z, t) is obtained from eq.(VII.2.2). ;

This completes the computation if, as a result of the solution, the fo]low-o-
1ng is obtained:

Po(2,8) >0

If this is not the case (p, < 0), then the point z and the instant t do not
correspond to the formation of the cloud and it must be assumed that

% Pv (z' t) — O’ (VII.Z.IO)
S(s1) = g(z0), | (VII.2.11)
‘ z.0) = bin(zt) — q(z,0)]. (VII.2.12)

Section 3. Solution

i According to egs.(VII.2.3) and (VII.2.}), the problem reduces to the solu-
. _ttion of two equations of the type ‘

i 3 ‘ azﬂi P
M pewgt=D g =L (VII.3.1)




where
‘ 7y (2,) = n(z0), ne(z,t) = S(zt). |

Let us determine the boundary and initial conditions of eq.(VII.3.1) for

i=1, 2.
Let

? T(3,0) = T — 17 ,
1 Pw (2,0) = py (0,0) e

i

for a = 0.45 km™}, which corresponds to Hann's formula (Bibl.l),

p(z) = 1.3-40% 3 * glem?,
T (,t) =0 (0,t) = const = T (0, 0),
— _ __Pyp(0,0)
o ) Q(O’ t)"—'P(Oy l) = const —-———————p(o) ,
& ’ 3-;1=H26_3L=H+10:Y“_Yv

] a8 3 2 P00 _ 2.
Shed 9 |sem " dz|lsen 3% PO € .
) Then,
T (0,00 , P00
t) = =
nl (Or ) Tob + Pw,o l"’b
Py (0, 0)
"2 (O’ t) = “;‘ = “21
w, 0
o ——T"—T——z-a PW(O'O)e_%aH::v
D7 l:em = T 30 Puo b
on) 2 Pe@O 2
L -d_.."— z=H_ 3 Pw,o 2

< The initial conditions can be presented in the form:

=T P 0.0 _2
Tob +1T—ob_z+ e 3az=q)1(z)t§

P (On 0) —_g.az ]
(2,0 ="7.—¢ * =@ |

~
—
L
(=}
-

Pw, o

We introduce the substitution

__erz+~c’1£‘
Vi (2,t) = m(z,t)e 30 "7 4D l
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(VII.3.2)

(VII.3.3)

(VII.3.4)

(VZ[I.B.?%Mt

(VII.3.6)
(VII.3.7)

(VI1.3.8)

(VII.3.9)E
(VII.B.lO);

(VII.3.11)

(VII.3.12)

(V11.3.13)

(VII.3.14)

i
i

(V1I.3.15)



The function ¥,(z, t) satisfies an equation of the type

|

a‘Pi o, ;
=Dz (VII.3.16)
for the boundary conditions 3
‘ chor TR
% 0, 1) = ped ', (VII.3.17)
Y, . s H+c'__"'g :
(Mt (e n),_, = ve @ (VII.3.18)
and for the initial condition
$i(@0) =q)e B, (VIL.3.19)
i |
It is convenient to seek the solution of this equation in the form of a sum
_ b (2 1) = 0 (2, ) + 90 (2, 0), | (VII.3.20)
~ where
; YO (2, 1) = ¥, (2) e®, (VII.3.21)
2w? - S . § I
k=25 | (VIL.3. 22)‘

Let ¥{*) (2, t) satisfy eq.(VII.3.16) for the boundary conditions (VII.3. 17)
- (VIL.3.18).

Then, X;(z) is the solution of the equation [_.31_5
g, (2) = DX (VII.3.23)
) ;for the boundary conditions
, % ) =,y | (VII.3.24)
3 (s a] B 329
This solution has the form of
, % (2)=ge_—(m +e_;%z[m 22‘e—c; H] 8 ‘ (VII'3'26)§

The function ¥\2’(z, t) is the solution of eq.(VII.3.16) for the boundary |
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conditions |
¥ 0, 1) =0, (VII.3.27)
[ ap

and for the initial condition
WO =a@e By @) (VIL.3.29)

Fourier's method makes it possible to present ¥’ (z, t) in the form of

i
i

H cw
W = 3V ' PP @) e T~y @)1 sin VEagas, LVII.3.30)§

n=0

where 1, is the eigenvalue of the problem, determined from the characteristic
equation ;
fanX = — |
§ - Az ; (VII.3.31)
. for _ _ 20
2 - X=HVh A=gg. (VII.3.32)
The roots of eq.(VII.3.31) are equal to
= @n+1) 5+ Y, (VII.3.33)
ft«fhere Y, =0 at n-=; ¥, is determined from the equation
- n , i
cot Yo = 4@+ 1) F + Ya]. | (VII.3.34)

A rough solution of this equation can be obtained by expanding cot Y, in a
-+ series according to the exponents of Y,, and limiting the calculatlon to the
7 first two terms of this series. Then the obtained values of Y, are made more |
S Aaccurate by Newton's method which consists in the following: If here the equa~
. tion

i
|
i
|

|

e /(@) =0

?is given and if its rough solution % is known, the solution can be made more
- exact by the method of successive approximations, using the formula

an = g1 e f" 1

rEy (VII.3.35)
|

> 'In our case, , , [216
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fz) =tgz+ Az.

For the values of A shown in Table VII.3.1 (for H = 10 km), the eigenvalues
\Ap(n=0,1, 2, ..., 20) were computed which are shown in Table VII.3.2. The
computational error does not exceed five units of the last place.

AR TABLE VII.3.1l
PG kg cot/sec
w. cmlses 10¢ ’ 10* l 10¢
1 0.02 0.2 2
2 0.01 0.1 1

In eq.(VII.3.30) the quantity N, represents the normal of the eigenfunc-
tions, calculated on the basis of

- H i
v, : Nﬂ — s 9 rend — _11-— sin2Yﬂ
. §Sln Vinzdz > +__4V}T,, . / (VII.3.36)

: The result of the calculation of N;, for the cases shown in Table VII.3.1,
is presented in Table VII.3.3. ;

The solution of eq.(VII.3.16) for the conditions (VII.3.17) - (VII.3.18)
is presented in the form of

“c:%‘ ‘—%2— had sin]/l:;z ~ApDt
Yi(z, t)=e e Xi(Z)"I—E—N—-—B X
- a n=0 n .
- ~ZE _ :
X lg@® —n@1e ® sinyitaE, (VII.3.37)
i 0

i M’here

il { - D -2 D _X

| X(a) = pige P4 D (VII.3.38)

The relation (VII.3.15) further yields

- piasinyin: — (0422, '
(2, 1) = xi(2) +e*” 2-——————-‘;"::3 (a0 + ) X 5
n=<g

n i ?

H -
X \Ilp2(B)— x "t in n |
: Slo®—x@e ™ siayanga. O (maam
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* smaller p,(0, O). The lower cloudiness which is more pronounced is the one that

~ g

Section 4. Analysis of the Numerical Results

_ The results of the computation of Tz, t), pu(z, t) and p,(z, t) are com-
piled in another paper (Bibl.7). Below, we give Tables and graphs of the dis- .
tribution of liquid-water content with time and with height for.w = 1 cm/sec,
ke = 10° em®/sec, T(0, t) = 278° in three cases:

i 1) ou(0, t) = 7 gm/u®, i.e., uw(0, t) = 100% (Table VII.h.1, Fig.h.l, a,b);i
T 2) pu(0, t) = 5 gn/m’®, i.e., u(0, t) = 70% (Table VII.L.2, Fig.VII.h.l,c)*%
i 3) 04 (0, t) = 3.5 gm/m®, i.e., u(0, t) = 50% (Table VII.h.B,Fig.VII.A.l,dST

In addition, Table VII.L4.L and Fig.VII.L.l,e give an example of the compuy%
tation for the case of w = 2 cm/sec, k = 10° em®/sec, T(O, t) = 278°, p.(0,t)
|

= 3.5 gn/m".

T
In Fig.VII.L.1,f the distributionsof liquid-water content are compared /219

for t ; 2, 3, and 5 days at w = 1 cm/sec (solid curves) and w = 2 cm/sec (broken
curves).,

The diagrams and Tables show that, in all cases, cloudiness begins to de- 1
velop simultaneously in the lower part of the atmosphere and at the upper boun-
dary of the layer. The upper cloudiness is negligible and is weaker the

qualitatively determines the process. After five days, this cloudiness ap-
proaches the limiting case, and the final stationary conditions are established

-after about 20 days if w = 1 cm/sec and considerably faster {after 10 days) if | -

w = 2 cm/sec. The maximum water content is accumulated at heights of 2 - L4 km;
the greater the humidity at the earth's surface the lower will be this height.
This demonstrates the decisive role played by vertical currents in the develop-.
ment of a cloud.

It could be assumed that the formation of the upper clouds is the result
of the possibility that the fluxes of heat and moisture (v; = 0) are equal to
zero at the upper boundary of the layer. A comparison of the calculation at
Vi =0 and vy #0[v; >0 and v < O according to eqs.(VII.3.11) and (VII.3.12)]
shows, however, that this is not a fact. In the second case, the conditions for
cloud formation become worse due to the fact than an inflow of heat and an out~!
flow of moisture take place through the upper boundary. Nevertheless, the solu+
tion is about equal in both cases because of the negligible role played by the
upper boundary conditions. The formation of the upper cloud is due to the ex~
isting initial conditions. Figure VII.L.2 gives the distribution along the
vertical of the initial temperature (Curve 1) at ¥ = 5°/km and of the dew point,
corresponding to the initial distribution of moisture. In the same diagram,
Curve 2 corresponds to the case of p(0, 0) = 7 gm/m? and Curve 3 to the case of
p(0, 0) = 5 gm/m®. Obviously, the moisture deficit reaches a maximum at the
innermost portion of the investigated layer and then decreases in the direction!
toward the upper boundary, where conditions favorable for the formation of a
cloud are thus created.

If the initial conditions assumed by us are considered close to reality (we
note that, for vy = 6°/km the above effect increases), then it is apparently pos%
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TABIE VII.3.2

A B

n ,
0,01 0,02 0,1 0,2 1,0 2,0 i
0 0.3111 0.3080 0.2863 0.2654 0.2029 0.1836
1 0.6222 0.6161 0.5760 0.5454 0.4913 0.4816
2 0.9333 0.9242 0.8712 0.8392 0.7079 0,7914
3 1.244 1.232 1.170 1.1409 1.109 1.104
4 1.555 1.541 1.473 1.4470 1.421 1.447
5 1.867 1.850 1.779 1.7556 1.734 1.731
6 2.178 2,158 2.087 2.0658 2.047 2.044
7 2.489 2.467 2.396 2.3770 2.360 2.360
8 2.800 2.777 2,706 2.6897 2.6704 2.6704
9 31114 3.086 3.016 3.0010 2.9845 2.9845
10 3.423 3.396 3.328 3.3137 3.2987 3.2987
11 3.734 3.706 3.640 3.6265 3.5128 3.6128
12 4.045 4,016 3.952 3.9386 3.9270 3.9270
13 4.357 4.327 4.264 4.2529 4.2412 4.2412
t4 4.669 4.638 4.577 4.5662 4.5553 4.5553
15 4.980 4.949 4.890 4.8797 4.8695 4.8695
16 5.292 5.260 5.203 5.1932 5.1836 5.1836
17 5.604 5.574 5.516 5.5068 5.4978 5.4978
18 5.916 5,882 5.829 5.8205 5.8120 5.8120
19 6.227 6.194 6.142 6.1342 6.1261 6.1261
20 6.539 6.506 6.456 6.4480 6.4403 6.4403
TABLE VII.3.3

A —
" 0,01 0,02 g1 0,2 1,0 2,0
0 5.040 5.0998 5.4617 5.7798 5.9775 5.6889 :
1 5.0490 5.0981 5.3756 5.4765 5.1988 5.1069 |
2 5.0493 5.0065 5.2840 5.2622 5.0776 5.0398 !
3 5.0501 5.0059 5.2109 5.1616 5.0424 5.0202
4 5.0498 5.0909 5.1573 5.1068 5.0257 5.0117
5 5.0470 5.0868 5.1200 5.0761 5,0178 5.0092
6 5.0469 5.0847 5.0939 5.0559 5.0122 5.0049
7 5.0467 5.0808 5.0745 5.0426 5,0082 5.0000
8 5.0465 5.0761 5.0605 5.0340 °$.,0000
9 5.0461 5.0726 5.0489 5.0271
10 5.0444 5.0684 5.0417 5.0229
11 5.0440 5.0646 5.0356 5.0181
12 5.0434 5.0609 5.0305 5.0165
13 5.0421 5.0572 5.,0260 5.0139
14 5.0408 5.0537 5.0234 5.0118
15 5.0402 5.0505 5.0205 5.0108
16 5.0390 5.0475 5.0183 5.0091
17 5.0379 5.0447 5,0163 5.0085
18 5.0368 5.0419 5.0145 5.0079
19 5.0361 5.0395 5.0129 5.0066
20 5.0351 5.0372 5.0121 5.0061
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sible to conclude that, for the condition of sufficient moisture in the layef'

near the ground, the ascending vertical currents and the turbulent mixing lead .
to the formation of a two-layer cloud.

0
a2o

1
240

|
260

280
T -]

Fig.VII.L.2 Vertical Slope of the Initial Temperature

to the
3? = 100%

(Curve 1) and of the Dew Point Correspondi

Initial Distribution of Moisture with u(O,
(Curve 2) and u(0, 0) = 75% (Curve 3)

Basically, the process of cloud formation is determined by the development

of the lower cloud. The upper cloud layer is so weak that it could be entirely!

disregarded were it not for the special effect of radiation on such a layer.

TABIE VII.4.3
t, days
2, km

1 1.5 2 3 4 -] 10 15

j 1 0 0 0 0 0 0 0. 0
2 0 0 0 0,272 0.434 0.551 0.671 0.738
3 0 0.0478 | 0,160 0.548 0.739 0.903 1.189 1.242
i 4 0 0.0832 | 0,182 0.599 0.820 1.014 1.34 1.434
: 5 0 0.234 0.167 0.458 0.712 0.911 1.360 1.428
i 6 0 0.0186 | 0.107 0.351 0,566 0.729 1.206 1.322
‘ 7 0 0.0139 | 0.082 0.251 0.434 0.555 1.047 1.154
i 8 0 0.0122 | 0.065 0,187 0.301 0.417 0.820 0.988
9 0.0009 | 0.0372 | 0,067 0.136 0.214 0.300 0,678 0.842
10 0.0292 | 0,0526 | 0.069 0.116 0.172 0.238 0.566 0.7118

5 There is also a second possibility.

does not reflect the true process of cloud formation.
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Some observational data show that
‘Hann's formula overestimates the humidity of the air in the upper part of the
‘troposphere. In this case, consideration of an upper cloud in our calculation
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/ :

TABLE VII.L.L
t, days
z, km
1 2 3 5 10 15
1 0 0 0 0 0 o
2 0.125 0.584 0.659 0.719 0.723 0.723
3 0.235 0.890 1.098 1.22 1.272 © 4,272
4 0.186 0.900 1.256 1.437 1.451 1.451°
5 0.110 0.74 1.135 1.407 1.430 1.454
6 0.060 0.534 0,948 1.275 1.360 1.361
7 0.0319 0.389 0.701 1.075 1.201 1.203
8 0.0287 0.254 0,495 0.871 1.044 1.047
9 0.196 0.345 0.689 0.902 0,907
10 0.282 0.555 0.775 0.781

Section 5. Limiting Regime

At a sufficiently removed instant of time t, the second term in the expres-
51on (VII.3.39) becomes small with respect to the first term so that the solu~
tion assumes the form

ne bR BT ). |

(VIL.5.1)

Equation (VII.5.1) determines the stationary state of the clouds. The rate

of creation of this state, as indicated in eq.(VII.3.39), depends on the quan- ;

tity —=

» i.e., on the ratio of the intensity of vertical currents to the tur-é
bulent exchange. Thus, according to another paper (Bibl.Lk), at w = O and k, = %
= 10° cni /sec, the stationary state is established after 73 days; according to ;
our computations, this state is established, for the same value of k,, after |
20 days at w = 1 em/sec and after 10 days at w = 2 cm/sec. |

J Therefore, at ratios of w to k;, characteristic for a real atmosphere, the
llmltlng regime is established during a time of the order of 10 days and is th
only of purely cognitive importance.

| It follows from eq.(VII.5.1) that
’ cwW

1) at Vy D

= 0 and any

J’;g(Z)‘—'-'n; ‘ .. (VII.502)
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2) at v, # 0 and -%E; -0

i'(zv)———pi‘{t viz, - (VII'5-3j

3) at v # 0 and gw -D
Mz =ps. - (VII.5.4)

Equations (VII.5.2) - (VII.5.4) show that, at a given value of the coeffi-
cient of turbulent mixing, the vertical currents not only determine the rate at
which the stationary state is established but also regulate the penetration in-
to the atmosphere of the conditions prevailing at the upper boundary.

i 1 i 4 1
8 L2 16 2.0 24 28 32 36 — I
A.9m’ |
|

Fig.VII.5.1 Iimit Distribution of Liquid-Water
Content at k = 10° cn®/sec.
l1-w=0,vy #0; 2-w =1 cm/sec, v; # O
2 - w=1cm/sec, vy = 0; 3 - "semi-empiri-
cal™ solution; 4 - solution form = 0O

large ascending vertical currents impede the downward spread of fluxes i
passing through the upper boundary, which results in a heat and humidity regime,
in the limit, which is about the same as in the case of zero fluxes [cf. egs. |
(VII.5.2) and (VII.5.4)]. At small w/D, the heat (moisture) passing through the
h(lpper box)mdary is redistributed into the depth of the layer, as shown in eq.
(VII.5.3).

We recall that the condition

;t'i(z) = p; = const

indicates an equalization of potential temperature and potential humidity over
the entire thickness of the atmosphere. Therefore, as compared with the initial
distribution of heat and moisture, the atmosphere at the limit will be colder
and more moist at all levels above the earth's surface, i.e., the conditions foz

210 o




‘Section 6. Allowing for the Radiation

N

cloud formation will improve. As compared with this case, at small w/D and at

v; # O and considering v; > O and v, < 0 [see egs.(VII.3.11) and (VII.3.12)],
we will obtain a less extensive cloudiness in accordance with eq.(VII.5.3).

All above statements confirm Fig.VII.5.1 which represents the limit dis-

tribution of liquid-water content under various conditions. Curve 1 corresponds

to the case w = 0, ky, = 10° on’/sec, vy is given by eq. (VII.3.11) and eq.
(VII.3.12); Curve 2 (solid) corresponds to w = 1 cm/sec, other conditions being
equal; Curve 2, with a broken segment, represents the previous case of v, = 0
and demonstrates the negligible effect of the heat and moisture fluxes through
the upper boundary in the presence of extensive vertical currents. This also

confirms the advantage of selecting the heat and moisture fluxes as the boundary

condition for z = H.

~ Figure VII 5.1 also gives the "semi-empirical™ solution of the problem ;
(Curve 3): The moisture is determined from eq.(VII.3.36) (i = 2) and the temp-
erature distribution is taken from observational data [see (Bibl.L)], while i
Curve L represents the solution of eqgs.(VII.1.8) and (VII.1.9), disregarding |

the heat of condensation, i.e., form = O [ in this formulation, the problem [2}

was considered in another paper (Bibl.10)]. Obviously, both last variants give
all significant deviations of the results of solving the problem, in more gen~
eral statements.

We will now consider eq.(VIIr.l.9) for R(T) # 0. Let us introduce a dimen—
sionless constant

Lodop,, o Be

a = 21! —m— = 7.6'10—’- ‘ (VIIoéol)i

hHere, as in Chapter VI, o, and B, are characteristic values for the absorption -

coefficient of water vapor and for the radiation of a black body; oo = 1 cn® /gm,

B = 0.146 cal/en’ * min, which corresponds to a temperature of T, = 273°. ‘
: z

Let us use the notation |
— { i
BT = g B0 BIT)- l (VII.6.2)

!
!
1
i

Then, eq.(VII.1.9) will assume the form

M, 30 a0, . m -
¥+ma_z=pﬁ+b?+_;-1i(r), s (VII.6.3)

where

| B (VII.6.L)

i
i
|



. the Fourier method. As a result, we obtain

From eq.(VII.6.3), together with egs.(VII.1. 8) and (VII.2.3), we will agaln
obtain equatlons of the type of

on a:fi o, :
T)i3+cw$205;2‘+®i(z, 1), i=1,2, 1 (VII.6.5)

i

where the symbols ™, (z, t) retain their previous meaning, and

D, (2,1) = 5";71 (T) = 5 H(T)eosz, D, (z,t) = 0. \ (VII.6.6)

The boundary and initial conditions of the problem also remain as before.

let us select a sufficiently small interval of time At such that the var1a+
tions in temperature, humidity, and water content durlng the time At will not |
lead to a considerable variation in R(t) and thus alsc in %, (z, t). Over the !
interval At we will assume #(z, t) to be constant in time and equal to %,(z, to)_

where t, is the initial instant of time.

For a free term independent of time, eq.(VII.6.5) can be solved simply by

n; (z l) = X ( ) + e r;‘; % sin V)"n" (A D+ )' - R AU B

n= 0 "

H

X\ 1 & 1) — 1, @1 € Fsin VEn B+

o

w2 1— —()‘“IN;;’) sinJA_z ¢
+ el 2 : D L out V S Dy(Ete) e ”-’sm VA, -EdE. (VII.6.7)
n=g oD . ;
Here, t varies within the limits of Zgg&

]
| If the solution obtained for the instant t = to + At is taken as the new
initial condition it is possible, by repeating the computation with eq.(VII.6.7),
to find the sought values at the instant t = t; + 2At and so forth.

. Consequently, the process of solution is accomplished in time steps® and
can be represented in the form of the following algorithm:

% We used an analogous method before (see Chapter VI, Sect.9) which simultane-
pusly took both turbulent and radiative heat exchange into consideration. i
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— E—‘Elm SiﬂV}T: —{a D_.*_“!wz At
i (2, L) = ¥, (2) + 2P E__Tv_'i_e (2 u)) %

n
n=0
H cw

v

x\ G )~y @1e P sinVa e +

1}

o iod '
o0 —AD+L— At . ras
LS (0t 55 2ty
nmo D% N, X
iD
H cw

X & O, (€, tede ™ sin (VTnk) d§-’ (VII.6 8)‘

Section 7. Calculation of the Radiative Heat Influx

The most difficult problem in calculations with eq.(VII.6.8) is derivation
of the quantity & (z, t ) which is comnected with the radiative inflow of heat :
R(T) over the relations (VII.6.2) and (VII.6.6).

We note first that, unlike in Chapter VI, it is not permissible here to
neglect the absorption of radiation by water vapor with respect to the absorp- .
tion by droplet water, in view of the fact that we here consider the initial
stage of the development of the cloud. For the same reason, it is not permis-
sible to use the simplified procedure for calculating the radiative inflow of
heat, proposed in Chapter VI.

If, as before, we neglect scattering®* and introduce a mean absorption co-
efficient for water oy_as well as three absorption coefficients for water vapor
ay(3 =1, 2, 3), then R(T) can be presented in the following form [see eq.
(I.2.45) for ky = 0].

. 1 3
Bz t) = =g _:J‘ (0w, ;pu (2, 1) + aupy (2, ) K; (T), (VII.7.1)
where :
TJ- .
K; T (z, )] = {,4,,,- + Ay + § B, ) E, (Iv; — £ |) &t — 2B; (s, z)}; (VII.7.2)
J ,
— B (VII1.7.3)
By =g; - 1
c _ VIL.7.
T = S‘[“w.if’w € 1) + awp, (&, )] dt; ( 7-4) ‘
P i
Here, Ay, is the radiation entering the medium from its lower boundary; [225

Az is the radiation penetrating from the upper boundary inward; A;, and Asy are
determined by the boundary conditions.

* This is more justified here because of the small concentration of droplets
in the nascent cloud.
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If we assume that the earth's surface radiates like a black body, we
obtain

45,5 = BAO, DEK). | (VIL.7.5)

The value of Asy is usually assumed to be zero. However, recalling the state-
ment made in Chapter I, Sect.3 as to the fluxes of long-wave descending radia-
tion at the upper boundary of the atmosphere being other than zero* then it is
natural to present this quantity in the form of ‘

W '

Ass= S BOQE: &+ —wd ) (VII.7.6)

Here E,(l) (?) = 1_3, [t (8 T(4) (§€) is the temperature distribution with height
at z > H; T,U is the optical thickness of the layer H < z < =, :

Equation (VII.7.6) represents (see Chapter VI) the influx of heat per
unit volume in the investigated layer O < z < H, due to the absorption of radi-
ant energy arriving from the layer z > H located above the cloud.

Stipulating that the top of the level z = H, receives primarily radiation:
from the immediately adjoining layer, we can limit the calculation to the
‘simple assumption

BV (£) = const — B; (H). o

A . — B .
21 =B B (5 — 1) — £, ) 4 ' — )l (VII.7.7)
A calculation on the basis of egs.(VII.7.1l) and (VII.7.2) at given py,(z),
pv(z), and T(z) is quite laborious and requires maintenance of a high accuracy
for the levels z located within the clouds, in view of the fact that here K,;(T):
can be very small (see Chapter VI) while the factor at K;(T) in eq.(VII.7.1) is
large (especially if py is sufficiently large). ;

Calculation of Ky(T) with high accuracy is made difficult by the fact

; T i
that r B(§)E (|7 - €|)dE is an improper integral, [the function E; (x) has a
. o) i
logarithmic singularity at x = O]J. In order to increase the computational :
accuracy, this integral can be presented in the following form (the subscript j:
is omitted here)
t* * I
o ={BOE(v—tpat={ ABG 0E (v —tpar+ |
0 ) ;

+ B (v) (2 —E, (v) — E, (" — 7], . (Vi1.7.8)

%* By upper boundary of the atmosphere is meant here and above the level of the
tropopause z = H = 10 km. .'
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Here, & = Te+y = Ty o

Let us consider that

1on
form the simple transformations. We then obtaln)the following express ‘
i?‘dtfx:rlntegral (VII.7.10) for the case f(%) AB(E, T, ,

. ' V u_l

— — Eg (thyy — 1)) +
SmuamEqn—ﬁpa =2 b By (= 1) — By (e —
* + AB (%, 1) E; (1 — %) — AB (Twuys ) E; (Thsy — 1)} —

—E{mwuu—ua—Eun—un+_ o
k...

+ AB (tln TIJ)—EZ (Tp - T’l') — AB (tlﬁh tﬂ) Ez (T" - tk+l)}' (VIIO 7016)

ts
haracterize the accuracy of calculation by eq.(VIII.7. 163; :wosgzziain
s ar:he interval (O, T#) into 12 and 36 parts of the poin utked o !
o dlv%glngre ven in Table VII.7.l. These values of Ty were cgl;rpthe les
;zzn:aofee:.(vﬁ 7.4) at ou(z, t) andtpv (;a ;())Grc;btgm(lgd :51)1 on; of the wexamp= ‘
f = s Pw

on namely, in the case o eV, W

lnlsixi;:ec ?;ee Flg.’\,lII L+2). Corresponding values of z, are gi o

Table VII. 7.10

TABLE VII.7.1
First Vaeriant Second Variant !
b3 Tk x bt 3 2k Tk 2k Tk
0 0 0 0 1.2 12.89 4.0 |° 19.66
0.5 6.08 0.4 1.22 1.3 13.25 4.5 {1 20.14
1.0 12.16 0.2 2.43 1.4 13.62 5.0 |3 20,62
1.5 13.98 0.3 3.65 1.5 .} 13,98 . coeBaBo | 5 20,92
2.0 15.80 0.4 4.86 1.6 4434 [ --690 | 2193
3.0 18.16. 0.5 6.08 1.7 14711+ 6.5 21,42
4.0 | 19,66 0.6 7.30 1.8 - 15,07 7.0 21.62
5.0 20.62 0.7 8.51 1.9 15.43
6.0 21,23 0.8 9.73 2.0 15.80
7.0 2162 | 0.9 10.94 2.8 ij18:98
8.0 | 21.89 1.0 12.16 3.0 | 18.16
9.0 | 22.08 1.9 12.52 3.5 18.91
10.0 23.50
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The computation with eq.(VII.7.16) for a linear temperature distribution
with height gives, in this case,

SAB(E» Tp)El(iTphgl)dE

U}

—0.00255 for n =12, |
—0.00261 for n =36 |
. Y. |

Therefore, the formula of approximate integration (VII.7.16) is quite
accurate when the interval (0, T#) is divided intc a comparatively small number
of parts.

Section 8. (Calculation Samples

Some numerical results showing the effect of the radiative inflow of heat -
on the variations in water content of the cloud are given below. ’

The calculations were made first with eq.(VII.6.8) for n = 20. The labori-
ousness of the calculations and the low accuracy at z = H made us change the
method of solution and apply the finite-difference method (Bibl.ll) directly to
eqs.(VII.6.5). Here as before, the nonlinear term of the equation & (z, t) was
assumed to be known while for t = t, it was to be calculated from eq.(VII.7.1l) |
and consequently for the values T(z, ta-1), Ov(2, ty=1), Pu(z, ty-1)e The calcu-
lations were made on the "Ural-1" computer. The following variants were con-
sidered:

-

1. w=1 cm/sec, ke =10% cm®/sec, R(T)=0, R(T)=£0;
2. w =2 cmysec, ki =10® cm¥/sec, R(T)=0, R(T)50
3. w=0, ki =108 em¥lsec, R(T)=0, .
4. w=0, k=0, R(T) 0.

For t = O, it was assumed that

I(z, 0) = I(0,0) —yz,

pw(Z, O) = p.,,(0,0) e, ‘
where T(0,0) = 280°, y = 50 &m™1, p, (0,0) = 9.39/m?, a = 0.45 km™L.

Table VII.8.1 gives the values of the liquid-water content py(z, 0) of /228
a cloud with the above-prescribed values of temperature and humidity at the i

TABLE VII.8.1

z, km

IERODE

0‘ 0.281 l 0.0276 | © ‘ 0 0

0

Py (3. 0), g/m?
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initial instant.

The following boundary conditions were assumed:

The calculations show that, under the influence of radiative cooling, the ;
cloud develops upward.

TABLE VII.8.2
R=9 R#0 R=10 R0 R=0 R#0 R=0 .R¢0
é:ﬁgg;7 0 2 ‘ 4 iqh
zq, km 2 ‘ 2 2 ‘ 3 \ 3 l 5 5 | &
o - .

Table VII.8.2 shows the heights of the upper boundaries of the cloud zg
at various instants of time at w = 1 cm/sec taking into account (R(T) # 0) but
neglecting (R(T) = 0) radiation.

TABLE VII.8.3
;pal cmisec “ w=2 cmizee
- t, hours ‘
i
- z, km 9 3
3 i =
1 2 ‘ “ \
3.2 1.8 1.5
6.8 5.3
! ! 50.5 31.5 3.7 | 88 | 87
2 104 . 189.7 _ 30.6 3
3 _ _ .

The increment of water content, in percent, due to radiation is shown in
Table VII.8.3., Here, z = 1 km corresponds to about the center of the cloud, ‘
while z = 2 km and 3 km refer to its upper part. The dashes in the Table refer
to cases where, at a height of z = 3 km, there was as yet no cloud when neglect-
ing the radiation but did appear when radiation was taken into consideration.
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Table VII.8.3 alsc shows that the contribution to the liquid-water content
made by radiation decreases with increasing velocity of ascending motion. This
.indicates the major role played by vertical currents in the formation of clouds.
With an increase in the latter, the relative contribution of other factors is
reduced.

To compare the radiative and turbulent inflow of heat, the absolute in- /229
crease in water content with time computed by means of

Bou(t) = pulzt) —pelzte). |

is shown in Table VII.8.4. (The quantities py and Apy are given in gm/m®.) In
the computations, it is assumed that w = O. The columns k; = O correspond to
pure radiation and the columns R = O refer to pure turbulence.

TABLE VII.8..

t, hours
]
2. kom 1 2. 3 !
w=o | m=t | m=o Rmo
1 0.006 0.011 0.009 0.030
2 0.0307 0.6039 0.0459 0.0162

The Table shows that, in the center of the cloud, the influence of radia-
tion is less than that of turbulence but that it is not negligibly small with
respect to the latter. In the upper part of the cloud, the role played by
radiative transfer becomes predominant.

Therefore, the generally accepted mechanism of formation of stratus clouds,
which takes into account vertical ordered motions and turbulent transfer of
heat and of moisture, is not complete. Radiative heat exchange plays an im-
portant role, especially in the upper part of the cloud.

The obtained results again confirm the decisive influence of radiation on !
the formation of upper layers of the cloud, revealed in Chapter VI. The condi-
tions stipulated in Chapter VI (no reductlon in water content toward the upper
boundary) permitted a direct investigation of the thermal effect of radiation, .
namely, the development of a temperature inversion.

In this Chapter, the problem was formulated as to assume that the water
content of a developing cloud rapidly diminishes in the direction toward the
upper boundary. In this case, in accordance with the conclusions in Chapter VI
no inversion of radiative origin takes place.
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£ 4 .

Obviously, both effects will be found if the formmlation of the problem is

a
changed to state that the computed water content does not decrease in the upper
part of the cloud.
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